cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A237800 Number of partitions of n such that 2*(least part) >= number of parts.

Original entry on oeis.org

1, 2, 2, 3, 3, 5, 5, 8, 9, 12, 14, 19, 21, 27, 32, 39, 45, 56, 64, 78, 90, 107, 124, 148, 169, 199, 229, 268, 306, 357, 406, 471, 536, 617, 701, 805, 910, 1041, 1177, 1341, 1511, 1717, 1931, 2187, 2457, 2773, 3109, 3503, 3918, 4403, 4919, 5514, 6150, 6881
Offset: 1

Views

Author

Clark Kimberling, Feb 15 2014

Keywords

Examples

			a(7) = 5 counts these partitions: 7, 61, 52, 43, 322.
		

Crossrefs

Programs

  • Mathematica
    z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}]   (* A237758 *)
    Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}]  (* A237757 *)
    Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}]   (* A237799 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}]  (* A237800 *)

A237754 Number of partitions of n such that 2*(greatest part) > (number of parts).

Original entry on oeis.org

1, 1, 2, 4, 5, 8, 11, 16, 23, 32, 43, 59, 78, 104, 137, 181, 233, 303, 388, 497, 630, 799, 1003, 1262, 1574, 1961, 2430, 3008, 3701, 4551, 5569, 6805, 8284, 10070, 12195, 14753, 17786, 21413, 25709, 30824, 36856, 44014, 52435, 62384, 74062, 87811, 103901
Offset: 1

Views

Author

Clark Kimberling, Feb 13 2014

Keywords

Comments

Also, the number of partitions of n such that (greatest part) < 2*(number of parts); hence, the number of partitions of n such that (rank + greatest part) > 0.
Also, the number of partitions p of n such that max(max(p), 2*(number of parts of p)) is not a part of p.

Examples

			a(5) = 5 counts these partitions:  5, 41, 32, 311, 221.
		

Crossrefs

Programs

  • Mathematica
    z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Max[p] > Length[p]], {n, z}]
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(2*k+j-2))/(1-x^j)))) \\ Seiichi Manyama, Jan 25 2022

Formula

a(n) = A000041(n) - A237752(n).
G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(2*k+j-2))/(1-x^j). - Seiichi Manyama, Jan 25 2022

A350893 Number of partitions of n such that (smallest part) = 2*(number of parts).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 10, 10, 12, 13, 15, 16, 19, 20, 23, 25, 28, 30, 34, 36, 40, 43, 47, 50, 56, 59, 65, 70, 77, 82, 91, 97, 107, 115, 126, 135, 149, 159, 174, 187, 204, 218, 238, 254, 276, 295, 320, 341, 370, 394, 426, 455, 491, 523, 565
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Crossrefs

Column 2 of A350890.

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[1 + Series[Sum[x^(2*j^2)*(1 - x^j)/Product[1 - x^i, {i, 1, j}], {j, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 21 2022 *)
  • PARI
    my(N=99, x='x+O('x^N)); concat(0, Vec(sum(k=1, sqrtint(N\2), x^(2*k^2)/prod(j=1, k-1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(2*k^2)/Product_{j=1..k-1} (1-x^j).
a(n) ~ (1 - alfa) * exp(2*sqrt(n*(2*log(alfa)^2 + polylog(2, 1 - alfa)))) * (2*log(alfa)^2 + polylog(2, 1 - alfa))^(1/4) / (2*sqrt(Pi) * sqrt(4 - 3*alfa) * n^(3/4)), where alfa = 0.72449195900051561158837228218703656578649448135... is positive real root of the equation alfa^4 + alfa - 1 = 0. - Vaclav Kotesovec, Jan 21 2022

A118084 Number of partitions of n such that largest part k occurs at most floor(k/2) times.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 11, 16, 23, 33, 46, 63, 86, 116, 153, 203, 265, 345, 444, 571, 727, 925, 1166, 1468, 1836, 2293, 2845, 3525, 4345, 5347, 6550, 8011, 9758, 11867, 14380, 17399, 20984, 25269, 30341, 36376, 43500, 51943, 61877, 73608, 87373, 103571
Offset: 1

Views

Author

Emeric Deutsch, Apr 12 2006

Keywords

Comments

Also number of partitions of n such that if the number of parts is k, then the smallest part is at most floor(k/2). Example: a(8)=16 because we have [7,1],[6,1,1],[5,2,1],[4,3,1],[5,1,1,1],[4,2,1,1],[3,3,1,1],[3,2,2,1],[2,2,2,2],[4,1,1,1,1],[3,2,1,1,1],[2,2,2,1,1],[3,1,1,1,1,1],[2,2,1,1,1,1],[2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1].

Examples

			a(8)=16 because we have [8],[7,1],[6,2],[6,1,1],[5,3],[5,2,1],[5,1,1,1],[4,4],[4,3,1],[4,2,2],[4,2,1,1],[4,1,1,1,1],[3,2,2,1],[3,2,1,1,1],[3,1,1,1,1,1] and [2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^k*(1-x^(k*(floor(k/2))))/product(1-x^j,j=1..k),k=1..85): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50);
  • Mathematica
    z=55 ; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n,z}] (* Clark Kimberling, Feb 15 2014 *)

Formula

G.f.=sum(x^k*(1-x^(k(floor(k/2))))/product(1-x^j, j=1..k), k=1..infinity).

A237829 Number of partitions of n such that 2*(least part) - 1 = greatest part.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 3, 2, 2, 5, 3, 4, 5, 5, 6, 8, 6, 8, 10, 10, 10, 15, 12, 14, 17, 18, 20, 23, 21, 26, 29, 30, 31, 39, 38, 42, 46, 49, 52, 61, 60, 68, 74, 77, 83, 94, 95, 104, 112, 122, 128, 143, 144, 159, 172, 181, 192, 212, 219, 237, 253, 271, 285
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(8) = 3 counts these partitions:  53, 332, 11111111.
		

Crossrefs

Programs

  • Mathematica
    z = 64; q[n_] := q[n] = IntegerPartitions[n];
    Table[Count[q[n], p_ /; 3 Min[p] == Max[p]], {n, z}]     (* A237825*)
    Table[Count[q[n], p_ /; 4 Min[p] == Max[p]], {n, z}]     (* A237826 *)
    Table[Count[q[n], p_ /; 5 Min[p] == Max[p]], {n, z}]     (* A237827 *)
    Table[Count[q[n], p_ /; 2 Min[p] + 1 == Max[p]], {n, z}] (* A237828 *)
    Table[Count[q[n], p_ /; 2 Min[p] - 1 == Max[p]], {n, z}] (* A237829 *)
    (* Second program: *)
    kmax = 64;
    Sum[x^(3k-1)/Product[1-x^j, {j, k, 2k-1}], {k, 1, kmax}]/x+1+O[x]^kmax // CoefficientList[#, x]& (* Jean-François Alcover, May 30 2024, after Seiichi Manyama *)
    nmax = 100; p = 1; s = x; Do[p = Simplify[p*(1 - x^(2*k - 1))*(1 - x^(2*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(3*k - 1)/(1 - x^k)*(1 - x^(2*k))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 18 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); Vec(x+sum(k=1, N, x^(3*k-1)/prod(j=k, 2*k-1, 1-x^j))) \\ Seiichi Manyama, May 17 2023

Formula

G.f.: x + Sum_{k>=1} x^(3*k-1)/Product_{j=k..2*k-1} (1-x^j). - Seiichi Manyama, May 17 2023
a(n) ~ exp(Pi*sqrt(2*n/15)) / (sqrt(2)* 5^(1/4) * phi^(3/2) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 20 2025

A237758 Number of partitions of n such that 2*(least part) < number of parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 10, 14, 21, 30, 42, 58, 80, 108, 144, 192, 252, 329, 426, 549, 702, 895, 1131, 1427, 1789, 2237, 2781, 3450, 4259, 5247, 6436, 7878, 9607, 11693, 14182, 17172, 20727, 24974, 30008, 35997, 43072, 51457, 61330, 72988, 86677, 102785, 121645
Offset: 1

Views

Author

Clark Kimberling, Feb 15 2014

Keywords

Examples

			a(5) = 4 counts these partitions: 311, 221, 2111, 11111.
		

Crossrefs

Programs

  • Mathematica
    z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}]   (* A237758 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n, z}]  (* A118084 *)
    Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}]  (* A237757 *)
    Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}]   (* A237799 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}]  (* A237800 *)

A237799 Number of partitions of n such that 2*(least part) > number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 7, 9, 10, 14, 15, 19, 23, 28, 32, 40, 46, 56, 65, 77, 89, 107, 122, 143, 165, 193, 220, 257, 292, 338, 385, 443, 503, 578, 653, 746, 844, 962, 1083, 1231, 1384, 1567, 1761, 1987, 2227, 2510, 2807, 3153, 3523, 3949, 4403, 4927, 5485
Offset: 1

Views

Author

Clark Kimberling, Feb 15 2014

Keywords

Examples

			a(7) = 4 counts these partitions: 7, 52, 43, 322.
		

Crossrefs

Programs

  • Mathematica
    z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}]   (* A237758 *)
    Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}]  (* A237757 *)
    Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}]   (* A237799 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}]  (* A237800 *)

A361861 Number of integer partitions of n where the median is twice the minimum.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 5, 5, 8, 11, 16, 20, 28, 38, 53, 67, 87, 111, 146, 183, 236, 297, 379, 471, 591, 729, 909, 1116, 1376, 1682, 2065, 2507, 3055, 3699, 4482, 5395, 6501, 7790, 9345, 11153, 13316, 15839, 18844, 22333, 26466, 31266, 36924, 43478, 51177
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(4) = 1 through a(11) = 11 partitions:
  (31)  (221)  (321)  (421)   (62)     (621)    (442)     (542)
                      (2221)  (521)    (4221)   (721)     (821)
                              (3221)   (4311)   (5221)    (6221)
                              (3311)   (22221)  (5311)    (6311)
                              (22211)  (32211)  (32221)   (33221)
                                                (33211)   (42221)
                                                (42211)   (43211)
                                                (222211)  (52211)
                                                          (222221)
                                                          (322211)
                                                          (2222111)
The partition (3,2,2,2,1,1) has median 2 and minimum 1, so is counted under a(11).
The partition (5,4,2) has median 4 and minimum 2, so is counted under a(11).
		

Crossrefs

For maximum instead of median we have A118096.
For length instead of median we have A237757, without the coefficient A006141.
With minimum instead of twice minimum we have A361860.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, A058398 by mean.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median, odd-length A359902.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],2*Min@@#==Median[#]&]],{n,30}]

A362049 Number of integer partitions of n such that (length) = 2*(median).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 4, 5, 9, 12, 19, 22, 29, 32, 39, 43, 51, 57, 70, 81, 101, 123, 153, 185, 230, 272, 328, 386, 454, 526, 617, 708, 824, 951, 1106, 1277, 1493, 1727, 2020, 2344, 2733, 3164, 3684, 4245, 4914, 5647, 6502, 7438, 8533, 9730
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). All of these partitions have even length, because an odd-length multiset cannot have fractional median.

Examples

			The a(13) = 3 through a(15) = 5 partitions:
  (7,2,2,2)  (8,2,2,2)      (9,2,2,2)
  (8,2,2,1)  (9,2,2,1)      (10,2,2,1)
  (8,3,1,1)  (9,3,1,1)      (10,3,1,1)
             (3,3,3,3,1,1)  (3,3,3,3,2,1)
                            (4,3,3,3,1,1)
		

Crossrefs

For maximum instead of median we have A237753.
For minimum instead of median we have A237757.
For maximum instead of length we have A361849, ranks A361856.
This is the equal case of A362048.
These partitions have ranks A362050.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==2*Median[#]&]],{n,30}]

A361800 Number of integer partitions of n with the same length as median.

Original entry on oeis.org

1, 0, 0, 2, 0, 0, 1, 2, 3, 3, 3, 3, 4, 6, 9, 13, 14, 15, 18, 21, 27, 32, 40, 46, 55, 62, 72, 82, 95, 111, 131, 157, 186, 225, 264, 316, 366, 430, 495, 578, 663, 768, 880, 1011, 1151, 1316, 1489, 1690, 1910, 2158, 2432, 2751, 3100, 3505, 3964, 4486, 5079, 5764
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(15) = 9 partitions (A=10, B=11):
  1  .  .  22  .  .  331  332  333  433  533  633  733   833   933
           31             431  432  532  632  732  832   932   A32
                               531  631  731  831  931   A31   B31
                                                   4441  4442  4443
                                                         5441  5442
                                                         5531  5532
                                                               6441
                                                               6531
                                                               6621
		

Crossrefs

For minimum instead of median we have A006141, for twice minimum A237757.
For maximum instead of median we have A047993, for twice length A237753.
For maximum instead of length we have A053263, for twice median A361849.
For mean instead of median we have A206240 (zeros removed).
For minimum instead of length we have A361860.
For twice median we have A362049, ranks A362050.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==Median[#]&]],{n,30}]
Previous Showing 11-20 of 24 results. Next