A361850
Number of strict integer partitions of n such that the maximum is twice the median.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 2, 1, 3, 3, 4, 2, 5, 4, 7, 8, 10, 6, 11, 11, 15, 16, 21, 18, 25, 23, 28, 32, 40, 40, 51, 51, 58, 60, 73, 75, 93, 97, 113, 123, 139, 141, 164, 175, 199, 217, 248, 263, 301, 320, 356, 383, 426, 450, 511, 551, 613, 664, 737
Offset: 1
The a(7) = 1 through a(20) = 4 strict partitions (A..C = 10..12):
421 . . 631 632 . 841 842 843 A51 A52 A53 A54 C62
5321 6421 7431 7432 8531 8532 C61 9542
7521 64321 8621 9541 9632
65321 9631 85421
9721
The partition (7,4,3,1) has maximum 7 and median 7/2, so is counted under a(15).
The partition (8,6,2,1) has maximum 8 and median 4, so is counted under a(17).
A000975 counts subsets with integer median.
A359907 counts strict partitions with integer median
Cf.
A027193,
A067659,
A079309,
A111907,
A116608,
A359897,
A359908,
A360952,
A361851,
A361858,
A361859,
A361860.
A362981
Heinz numbers of integer partitions such that 2*(least part) >= greatest part.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 55, 59, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 89, 91, 96, 97, 101, 103, 105, 107, 108, 109, 113, 119, 121, 125
Offset: 1
The terms together with their prime indices begin:
1: {} 16: {1,1,1,1} 36: {1,1,2,2}
2: {1} 17: {7} 37: {12}
3: {2} 18: {1,2,2} 41: {13}
4: {1,1} 19: {8} 43: {14}
5: {3} 21: {2,4} 45: {2,2,3}
6: {1,2} 23: {9} 47: {15}
7: {4} 24: {1,1,1,2} 48: {1,1,1,1,2}
8: {1,1,1} 25: {3,3} 49: {4,4}
9: {2,2} 27: {2,2,2} 53: {16}
11: {5} 29: {10} 54: {1,2,2,2}
12: {1,1,2} 31: {11} 55: {3,5}
13: {6} 32: {1,1,1,1,1} 59: {17}
15: {2,3} 35: {3,4} 61: {18}
For prime factors instead of indices we have
A081306.
Partitions of this type are counted by
A237824.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],2*Min@@prix[#]>=Max@@prix[#]&]
A362982
Heinz numbers of partitions such that 2*(least part) < greatest part.
Original entry on oeis.org
10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126
Offset: 1
The terms together with their prime indices begin:
10: {1,3} 44: {1,1,5} 70: {1,3,4}
14: {1,4} 46: {1,9} 74: {1,12}
20: {1,1,3} 50: {1,3,3} 76: {1,1,8}
22: {1,5} 51: {2,7} 78: {1,2,6}
26: {1,6} 52: {1,1,6} 80: {1,1,1,1,3}
28: {1,1,4} 56: {1,1,1,4} 82: {1,13}
30: {1,2,3} 57: {2,8} 84: {1,1,2,4}
33: {2,5} 58: {1,10} 85: {3,7}
34: {1,7} 60: {1,1,2,3} 86: {1,14}
38: {1,8} 62: {1,11} 87: {2,10}
39: {2,6} 66: {1,2,5} 88: {1,1,1,5}
40: {1,1,1,3} 68: {1,1,7} 90: {1,2,2,3}
42: {1,2,4} 69: {2,9} 92: {1,1,9}
For prime factors instead of indices we have
A069900, complement
A081306.
Partitions of this type are counted by
A237820.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],2*Min@@prix[#]
A363132
Number of integer partitions of 2n such that 2*(minimum) = (mean).
Original entry on oeis.org
0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0
The a(2) = 1 through a(7) = 14 partitions:
(31) (321) (62) (32221) (93) (3222221)
(411) (3221) (33211) (552) (3322211)
(3311) (42211) (642) (3332111)
(4211) (43111) (732) (4222211)
(5111) (52111) (822) (4322111)
(61111) (322221) (4331111)
(332211) (4421111)
(333111) (5222111)
(422211) (5321111)
(432111) (5411111)
(441111) (6221111)
(522111) (6311111)
(531111) (7211111)
(621111) (8111111)
(711111)
Removing the factor 2 gives
A099777.
Taking maximum instead of mean and including odd indices gives
A118096.
For length instead of mean and including odd indices we have
A237757.
For median instead of mean we have
A361861.
These partitions have ranks
A363133.
For maximum instead of minimum we have
A363218.
For median instead of minimum we have
A363224.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
-
Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
-
from sympy.utilities.iterables import partitions
def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023
A363134
Positive integers whose multiset of prime indices satisfies: (length) = 2*(minimum).
Original entry on oeis.org
4, 6, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 81, 82, 86, 94, 106, 118, 122, 134, 135, 142, 146, 158, 166, 178, 189, 194, 202, 206, 214, 218, 225, 226, 254, 262, 274, 278, 297, 298, 302, 314, 315, 326, 334, 346, 351, 358, 362, 375, 382, 386, 394, 398, 422, 441
Offset: 1
The terms together with their prime indices begin:
4: {1,1} 94: {1,15} 214: {1,28}
6: {1,2} 106: {1,16} 218: {1,29}
10: {1,3} 118: {1,17} 225: {2,2,3,3}
14: {1,4} 122: {1,18} 226: {1,30}
22: {1,5} 134: {1,19} 254: {1,31}
26: {1,6} 135: {2,2,2,3} 262: {1,32}
34: {1,7} 142: {1,20} 274: {1,33}
38: {1,8} 146: {1,21} 278: {1,34}
46: {1,9} 158: {1,22} 297: {2,2,2,5}
58: {1,10} 166: {1,23} 298: {1,35}
62: {1,11} 178: {1,24} 302: {1,36}
74: {1,12} 189: {2,2,2,4} 314: {1,37}
81: {2,2,2,2} 194: {1,25} 315: {2,2,3,4}
82: {1,13} 202: {1,26} 326: {1,38}
86: {1,14} 206: {1,27} 334: {1,39}
Partitions of this type are counted by
A237757.
Removing the factor 2 gives
A324522.
A360005 gives twice median of prime indices.
Cf.
A000961,
A006141,
A046660,
A051293,
A106529,
A111907,
A237755,
A237824,
A327482,
A361860,
A361861,
A362050.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Length[prix[#]]==2*Min[prix[#]]&]
A362048
Number of integer partitions of n such that (length) <= 2*(median).
Original entry on oeis.org
1, 2, 2, 3, 4, 6, 8, 12, 15, 20, 25, 33, 41, 53, 66, 85, 105, 134, 164, 205, 250, 308, 373, 456, 549, 666, 799, 963, 1152, 1382, 1645, 1965, 2330, 2767, 3269, 3865, 4546, 5353, 6274, 7357, 8596, 10046, 11700, 13632, 15834, 18394, 21312, 24690, 28534, 32974
Offset: 1
The a(1) = 1 through a(9) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(222) (322) (71) (81)
(321) (331) (332) (333)
(421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(3321)
(4221)
(4311)
For maximum instead of median we have
A237755.
For minimum instead of median we have
A237800.
For maximum instead of length we have
A361848.
A000975 counts subsets with integer median.
A363133
Numbers > 1 whose prime indices satisfy 2*(minimum) = (mean).
Original entry on oeis.org
10, 28, 30, 39, 84, 88, 90, 100, 115, 171, 208, 252, 255, 259, 264, 270, 273, 280, 300, 363, 517, 544, 624, 756, 783, 784, 792, 793, 810, 840, 880, 900, 925, 1000, 1035, 1085, 1197, 1216, 1241, 1425, 1495, 1521, 1595, 1615, 1632, 1683, 1691, 1785, 1872, 1911
Offset: 1
The terms together with their prime indices begin:
10: {1,3}
28: {1,1,4}
30: {1,2,3}
39: {2,6}
84: {1,1,2,4}
88: {1,1,1,5}
90: {1,2,2,3}
100: {1,1,3,3}
115: {3,9}
171: {2,2,8}
208: {1,1,1,1,6}
252: {1,1,2,2,4}
255: {2,3,7}
259: {4,12}
264: {1,1,1,2,5}
Removing the factor 2 gives
A000961.
Partitions of this type are counted by
A363132.
A051293 counts subsets with integer mean.
A360005 gives twice median of prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]==2*Min[prix[#]]&]
A384426
G.f.: Sum_{k>=1} x^k * Product_{j=k..2*k} (1 + x^j).
Original entry on oeis.org
0, 1, 2, 2, 3, 2, 3, 3, 4, 4, 4, 5, 6, 5, 6, 7, 8, 8, 9, 9, 10, 12, 12, 13, 14, 14, 16, 18, 19, 20, 21, 22, 24, 26, 28, 30, 32, 33, 34, 38, 40, 43, 46, 48, 51, 54, 56, 60, 64, 67, 72, 77, 80, 84, 88, 92, 98, 105, 110, 116, 122, 128, 134, 142, 148, 155, 164, 172
Offset: 0
-
nmax = 100; CoefficientList[Series[Sum[x^k * Product[1 + x^j, {j,k,2*k}], {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 + x^(2*k - 1))*(1 + x^(2*k))/(1 + x^k)]; p = Normal[p + O[x]^nmax]; s += p*(1 + x^k)*x^k;, {k, 1, nmax}]; Take[CoefficientList[s, x], nmax + 1]
A361862
Number of integer partitions of n such that (maximum) - (minimum) = (mean).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 0, 3, 2, 2, 0, 7, 0, 3, 6, 10, 0, 13, 0, 17, 10, 5, 0, 40, 12, 6, 18, 34, 0, 62, 0, 50, 24, 8, 60, 125, 0, 9, 32, 169, 0, 165, 0, 95, 176, 11, 0, 373, 114, 198, 54, 143, 0, 384, 254, 574, 66, 14, 0, 1090, 0, 15, 748, 633, 448, 782, 0, 286
Offset: 1
The a(4) = 1 through a(12) = 7 partitions:
(31) . (321) . (62) (441) (32221) . (93)
(3221) (522) (33211) (642)
(3311) (4431)
(5322)
(322221)
(332211)
(333111)
The partition y = (4,4,3,1) has maximum 4 and minimum 1 and mean 3, and 4 - 1 = 3, so y is counted under a(12). The diagram of y is:
o o o o
o o o o
o o o .
o . . .
Both the rectangle from the left and the complement have size 4.
Positions of zeros are 1 and
A000040.
For length instead of mean we have
A237832.
For minimum instead of mean we have
A118096.
These partitions have ranks
A362047.
A067538 counts partitions with integer mean.
A097364 counts partitions by (maximum) - (minimum).
A243055 subtracts the least prime index from the greatest.
A326844 gives the diagram complement size of Heinz partition.
Cf.
A237984,
A240219,
A326836,
A326837,
A327482,
A237755,
A237824,
A349156,
A359360,
A360068,
A360241,
A361853.
Comments