cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A241864 Number of compositions of n such that the smallest part has multiplicity four.

Original entry on oeis.org

1, 0, 5, 5, 21, 35, 85, 175, 366, 730, 1481, 2925, 5726, 11110, 21375, 40766, 77266, 145495, 272290, 506836, 938783, 1730725, 3176920, 5808020, 10578162, 19197898, 34725765, 62616485, 112574807, 201827366, 360885835, 643679795, 1145341756, 2033369086
Offset: 4

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=4 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=4..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[nJean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ (1/2-1/sqrt(5))^3 / 15 * n^4 * ((1+sqrt(5))/2)^n. - Vaclav Kotesovec, May 01 2014

A241865 Number of compositions of n such that the smallest part has multiplicity five.

Original entry on oeis.org

1, 0, 6, 6, 27, 49, 125, 258, 579, 1202, 2512, 5157, 10463, 20949, 41627, 81912, 159834, 309641, 595836, 1139211, 2165502, 4094219, 7701857, 14420351, 26880988, 49902183, 92279657, 170020844, 312173822, 571307477, 1042310911, 1896039086, 3439404321, 6222483152
Offset: 5

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=5 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=5..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 5}, Sum[Function[{p}, Sum[Coefficient[p, x, i] * Binomial[i+k, k], {i, 0, Exponent[p, x]}]][b[n-j*k, j+1]], {j, 1, n/k}]]; Table[ a[n], {n, 5, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ n^5 * ((1+sqrt(5))/2)^(n-11) / (5^3 * 5!). - Vaclav Kotesovec, May 02 2014

A241866 Number of compositions of n such that the smallest part has multiplicity six.

Original entry on oeis.org

1, 0, 7, 7, 35, 63, 176, 371, 861, 1862, 4032, 8512, 17851, 36848, 75286, 152334, 305466, 607313, 1198443, 2348388, 4571728, 8846314, 17021480, 32579029, 62048589, 117627699, 222018034, 417326148, 781395064, 1457684326, 2709797693, 5020734691, 9273107977
Offset: 6

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=6 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=6..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 6}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 6, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ n^6 * ((1+sqrt(5))/2)^(n-13) / (5^(7/2) * 6!). - Vaclav Kotesovec, May 02 2014

A241867 Number of compositions of n such that the smallest part has multiplicity seven.

Original entry on oeis.org

1, 0, 8, 8, 44, 80, 236, 513, 1238, 2744, 6160, 13384, 28846, 61228, 128513, 266668, 548185, 1116580, 2255452, 4521198, 8998844, 17792361, 34962224, 68305274, 132724871, 256587512, 493665604, 945497642, 1803122075, 3424720416, 6479635254, 12214748337
Offset: 7

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=7 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=7..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 7}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 7, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ n^7 * ((1+sqrt(5))/2)^(n-15) / (5^4 * 7!). - Vaclav Kotesovec, May 02 2014

A241868 Number of compositions of n such that the smallest part has multiplicity eight.

Original entry on oeis.org

1, 0, 9, 9, 54, 99, 309, 684, 1720, 3909, 9036, 20178, 44676, 97191, 209151, 444498, 935002, 1947729, 4021429, 8234244, 16732173, 33758283, 67656843, 134751630, 266817214, 525411981, 1029271671, 2006453683, 3893241810, 7521104292, 14468931402, 27724579185
Offset: 8

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=8 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=8..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 8}, Sum[Function[{p}, Sum[Coefficient[p, x, i]*Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[a[n], {n, 8, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ n^8 * ((1+sqrt(5))/2)^(n-17) / (5^(9/2) * 8!). - Vaclav Kotesovec, May 02 2014

A241869 Number of compositions of n such that the smallest part has multiplicity nine.

Original entry on oeis.org

1, 0, 10, 10, 65, 120, 395, 890, 2320, 5401, 12847, 29380, 66735, 148630, 327270, 711247, 1529020, 3252775, 6855276, 14320645, 29672905, 61018010, 124587120, 252694835, 509337682, 1020610708, 2033777830, 4031514561, 7951981550, 15611183177, 30510678865
Offset: 9

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=9 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=9..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[nJean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ n^9 * ((1+sqrt(5))/2)^(n-19) / (5^5 * 9!). - Vaclav Kotesovec, May 02 2014

A241870 Number of compositions of n such that the smallest part has multiplicity ten.

Original entry on oeis.org

1, 0, 11, 11, 77, 143, 495, 1133, 3058, 7271, 17777, 41580, 96701, 220187, 495528, 1099626, 2412927, 5236308, 11251449, 23952841, 50556265, 105852923, 219975999, 453933348, 930544912, 1895736986, 3839424644, 7732852963, 15492659226, 30884561378, 61276442019
Offset: 10

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Comments

Conjecture: Generally, for k > 0 is column k of A238342 asymptotic to n^k * ((1+sqrt(5))/2)^(n-2*k-1) / (5^((k+1)/2) * k!). - Vaclav Kotesovec, May 02 2014

Crossrefs

Column k=10 of A238342.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, 1,
          `if`(nadd(coeff(p, x, i)*binomial(i+k, k),
           i=0..degree(p)))(b(n-j*k, j+1)), j=1..n/k)
        end:
    seq(a(n), n=10..40);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, 1, If[n < s, 0, Expand[Sum[b[n - j, s]*x, {j, s, n}]]]]; a[n_] := With[{k = 10}, Sum[Function[{p}, Sum[Coefficient[p, x, i] * Binomial[i + k, k], {i, 0, Exponent[p, x]}]][b[n - j*k, j + 1]], {j, 1, n/k}]]; Table[ a[n], {n, 10, 40}] (* Jean-François Alcover, Feb 09 2015, after Maple *)

Formula

a(n) ~ n^10 * ((1+sqrt(5))/2)^(n-21) / (5^(11/2) * 10!). - Vaclav Kotesovec, May 02 2014

A383870 Number of compositions of n such that none of the smallest parts are adjacent.

Original entry on oeis.org

1, 1, 1, 3, 4, 9, 15, 29, 53, 98, 180, 336, 618, 1142, 2110, 3899, 7197, 13283, 24509, 45218, 83396, 153769, 283463, 522449, 962732, 1773742, 3267417, 6018030, 11082693, 20407174, 37572633, 69169726, 127326924, 234362474, 431343281, 793831500, 1460854117
Offset: 0

Views

Author

John Tyler Rascoe, May 13 2025

Keywords

Examples

			a(5) = 9 counts: (1,2,2), (1,3,1), (1,4), (2,1,2), (2,2,1), (2,3), (3,2), (4,1), (5).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i<1, 0,
         `if`(irem(n, i, 'r')=0, p!*binomial(p+1, r), 0)+
          add(b(n-i*j, min(n-i*j, i-1), p+j)/j!, j=0..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n$2, 0)):
    seq(a(n), n=0..36);  # Alois P. Heinz, May 13 2025
  • PARI
    A_x(N) ={Vec(1+sum(j=0,N, sum(i=j+1,N-j, (binomial(i,i-j-1) * x^(j+1) * (x^2/(1-x))^(i-1) )/(1-x^(i+j))))+O('x^N))}
    A_x(50)

Formula

G.f.: 1 + Sum_{j>=0} Sum_{i>j} (binomial(i,i-j-1) * x^(j+1) * (x^2/(1 - x))^(i-1))/(1 - x^(i+j)).
Previous Showing 11-18 of 18 results.