cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A303040 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 11, 6, 8, 8, 21, 14, 10, 16, 13, 31, 28, 35, 21, 32, 21, 113, 56, 74, 71, 42, 64, 34, 363, 150, 234, 197, 186, 86, 128, 55, 813, 360, 869, 703, 544, 459, 179, 256, 89, 1751, 828, 2926, 3069, 2494, 1686, 1287, 370, 512, 144, 5001, 1906, 8500, 11079
Offset: 1

Views

Author

R. H. Hardin, Apr 17 2018

Keywords

Comments

Table starts
...1...2....3.....5......8......13.......21........34.........55..........89
...2...3...11....21.....31.....113......363.......813.......1751........5001
...4...6...14....28.....56.....150......360.......828.......1906........4628
...8..10...35....74....234.....869.....2926......8500......27931.......96592
..16..21...71...197....703....3069....11079.....39281.....147655......574771
..32..42..186...544...2494...13597....59654....251705....1186522.....5869222
..64..86..459..1686...9882...63254...345668...1853428...10924077....67726475
.128.179.1287..5252..38855..298328..2060154..13840842..103929273...827923879
.256.370.3490.16336.158630.1487003.13122422.112389422.1107624272.11716920536

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1
..0..0..0..0. .1..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..0
..0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..1..1. .1..1..0..1
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .0..1..0..1. .1..0..0..1. .0..1..0..1. .0..0..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).
Row 2 is A302310.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 13] for n>16
k=4: [order 70]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) +12*a(n-4) -16*a(n-5) for n>6
n=3: [order 11] for n>12
n=4: [order 61] for n>62

A303084 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 32, 3, 16, 1, 72, 29, 112, 6, 32, 1, 168, 258, 90, 416, 10, 64, 1, 496, 432, 1455, 304, 1512, 21, 128, 1, 1296, 2525, 3667, 11767, 1054, 5472, 42, 256, 1, 3616, 6313, 33152, 34430, 84474, 4182, 19904, 86, 512, 1, 9760, 30188, 157838
Offset: 1

Views

Author

R. H. Hardin, Apr 18 2018

Keywords

Comments

Table starts
...1..1.....1.....1........1.........1............1.............1
...2..2....12....20.......72.......168..........496..........1296
...4..2....32....29......258.......432.........2525..........6313
...8..3...112....90.....1455......3667........33152........157838
..16..6...416...304....11767.....34430.......636070.......4585419
..32.10..1512..1054....84474....409478.....13375327.....170974652
..64.21..5472..4182...615471...4862916....266882021....5924274499
.128.42.19904.17369..4647197..60442630...5754725245..218955384065
.256.86.72396.75377.35089147.764631608.125608726910.8100166904419

Examples

			Some solutions for n=5 k=4
..0..0..0..1. .0..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..0..1
..0..0..0..1. .1..1..1..1. .0..0..1..1. .1..1..1..1. .1..0..0..1
..0..1..0..1. .0..0..0..0. .1..0..0..0. .0..1..0..1. .1..0..0..1
..0..0..0..0. .0..0..0..0. .1..0..0..1. .1..1..1..1. .0..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..0..1. .0..1..1..1. .1..0..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A302368.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 11]
k=4: [order 56] for n>57
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 17] for n>18
n=4: [order 67] for n>68

A303197 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 9, 6, 8, 8, 17, 12, 10, 16, 13, 25, 23, 23, 21, 32, 21, 65, 43, 46, 62, 42, 64, 34, 185, 105, 97, 185, 122, 86, 128, 55, 385, 233, 283, 523, 497, 305, 179, 256, 89, 649, 479, 687, 2106, 1751, 1357, 793, 370, 512, 144, 1489, 968, 1642, 7425, 8250, 5573
Offset: 1

Views

Author

R. H. Hardin, Apr 19 2018

Keywords

Comments

Table starts
...1...2....3.....5.....8.....13......21.......34........55.........89
...2...3....9....17....25.....65.....185......385.......649.......1489
...4...6...12....23....43....105.....233......479.......968.......2146
...8..10...23....46....97....283.....687.....1642......3949......10169
..16..21...62...185...523...2106....7425....23976.....77199.....278516
..32..42..122...497..1751...8250...34801...138014....547379....2363422
..64..86..305..1357..5573..32223..164295...791150...3806973...20061588
.128.179..793..4207.21575.159440.1053249..6303961..38494616..258640170
.256.370.1757.12167.76833.703465.5803057.43287208.332058205.2785202370

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..1..0
..1..1..1..0. .0..1..1..1. .0..0..0..1. .0..1..0..0. .0..1..0..1
..1..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..0..1..0. .0..0..0..1. .0..1..1..1. .0..1..0..1. .0..0..0..1
..1..0..0..1. .1..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..1..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).
Row 2 is A302164.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 7] for n>11
k=4: [order 42] for n>43
k=5: [order 33] for n>37
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +16*a(n-4) -8*a(n-5) for n>6
n=3: [order 18] for n>19
n=4: [order 70] for n>71

A303242 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 11, 2, 8, 1, 13, 18, 3, 16, 1, 34, 8, 55, 6, 32, 1, 65, 60, 10, 181, 10, 64, 1, 123, 56, 255, 61, 494, 21, 128, 1, 266, 236, 149, 1106, 160, 1465, 42, 256, 1, 499, 428, 1676, 1373, 5158, 458, 4415, 86, 512, 1, 1037, 1248, 3307, 11111, 7823, 23995, 1748
Offset: 1

Views

Author

R. H. Hardin, Apr 20 2018

Keywords

Comments

Table starts
...1..1.....1....1......1.......1........1.........1..........1............1
...2..2....11...13.....34......65......123.......266........499.........1037
...4..2....18....8.....60......56......236.......428.......1248.........3264
...8..3....55...10....255.....149.....1676......3307......18505........65498
..16..6...181...61...1106....1373....11111.....38480.....221943......1162591
..32.10...494..160...5158....7823....90728....421983....3251872.....23282610
..64.21..1465..458..23995...41878...686376...4288552...44547581....435326091
.128.42..4415.1748.108726..277018..5320294..48315454..648070597...8762716079
.256.86.12934.6056.506416.1721671.42575026.536745912.9508520220.176408218876

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..1. .0..1..1..1. .0..1..1..1. .0..0..1..1
..0..0..1..1. .1..0..0..0. .1..1..1..0. .0..1..1..0. .0..0..1..1
..0..0..1..0. .1..0..1..0. .1..1..1..1. .0..1..1..1. .0..1..1..0
..0..0..1..1. .1..0..0..0. .1..1..1..1. .0..1..1..1. .0..0..1..1
..0..0..1..1. .0..0..0..1. .0..1..1..0. .0..1..1..0. .0..0..1..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A297870(n+2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 13]
k=4: [order 71] for n>72
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = a(n-1) +3*a(n-2) -4*a(n-4) for n>5
n=3: [order 20]
n=4: [order 67] for n>68

A303525 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 5, 11, 6, 8, 8, 21, 18, 10, 16, 13, 31, 37, 39, 21, 32, 21, 113, 80, 103, 95, 42, 64, 34, 363, 286, 359, 340, 246, 86, 128, 55, 813, 916, 1875, 1758, 1115, 687, 179, 256, 89, 1751, 2532, 8676, 13031, 9225, 4112, 2023, 370, 512, 144, 5001, 7477, 36072
Offset: 1

Views

Author

R. H. Hardin, Apr 25 2018

Keywords

Comments

Table starts
...1...2....3.....5.......8........13.........21...........34............55
...2...3...11....21......31.......113........363..........813..........1751
...4...6...18....37......80.......286........916.........2532..........7477
...8..10...39...103.....359......1875.......8676........36072........166784
..16..21...95...340....1758.....13031......87730.......569770.......4036330
..32..42..246..1115....9225....102779....1052163.....10663440.....122173279
..64..86..687..4112...56046....965150...15768709....258412452....4730074082
.128.179.2023.16640..366415...9961980..260078546...6835357512..199276300520
.256.370.6126.71025.2519399.109395622.4544413190.190464446456.8858057538977

Examples

			Some solutions for n=5 k=4
..0..1..1..1. .0..1..1..1. .0..1..1..1. .0..0..1..1. .0..1..1..0
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..0..0..0
..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .1..1..1..0
..0..0..0..1. .0..1..0..1. .1..0..0..1. .0..0..0..1. .1..0..1..0
..0..1..1..1. .0..1..1..0. .1..0..1..0. .0..1..1..1. .1..0..1..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513.
Row 1 is A000045(n+1).
Row 2 is A302310.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 12] for n>15
k=4: [order 47] for n>49
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-2) +4*a(n-3) +12*a(n-4) -16*a(n-5) for n>6
n=3: [order 20] for n>21
n=4: [order 58] for n>60

A303624 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 12, 2, 8, 1, 20, 38, 3, 16, 1, 72, 68, 148, 6, 32, 1, 168, 362, 325, 616, 10, 64, 1, 496, 1283, 3591, 1870, 2520, 21, 128, 1, 1296, 5411, 19467, 37910, 10741, 10288, 42, 256, 1, 3616, 22516, 160807, 350410, 398859, 62207, 42100, 86, 512, 1, 9760
Offset: 1

Views

Author

R. H. Hardin, Apr 27 2018

Keywords

Comments

Table starts
...1..1......1.......1.........1...........1.............1................1
...2..2.....12......20........72.........168...........496.............1296
...4..2.....38......68.......362........1283..........5411............22516
...8..3....148.....325......3591.......19467........160807..........1173612
..16..6....616....1870.....37910......350410.......5249045.........70522741
..32.10...2520...10741....398859.....6446485.....179884814.......4470005178
..64.21..10288...62207...4288358...122517773....6323564388.....290118140045
.128.42..42100..363485..46208517..2348299355..224091914399...18955122420980
.256.86.172268.2135551.499581127.45211204167.7966090548780.1240883902751147

Examples

			Some solutions for n=5 k=4
..0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..1
..0..0..1..1. .0..0..0..0. .0..0..1..1. .1..0..0..0. .0..0..0..1
..0..0..1..1. .1..1..0..0. .1..1..1..1. .0..0..0..1. .1..0..0..0
..1..1..1..1. .0..1..1..1. .1..1..1..1. .0..0..0..1. .0..0..0..1
..0..1..1..1. .0..1..1..1. .0..1..1..0. .1..0..0..0. .0..0..0..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A240513(n-2).
Row 2 is A302368.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: a(n) = 5*a(n-1) -5*a(n-2) +8*a(n-3) -12*a(n-4) +4*a(n-5) -4*a(n-6) for n>8
k=4: [order 22] for n>24
k=5: [order 62] for n>65
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +4*a(n-2) -4*a(n-3) -4*a(n-4)
n=3: [order 16] for n>17
n=4: [order 43] for n>44

A301906 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 1, 16, 1, 3, 2, 7, 1, 32, 1, 6, 2, 5, 16, 1, 64, 1, 10, 7, 8, 10, 43, 1, 128, 1, 21, 12, 40, 12, 26, 117, 1, 256, 1, 42, 27, 96, 92, 64, 65, 330, 1, 512, 1, 86, 62, 316, 320, 532, 196, 170, 935, 1, 1024, 1, 179, 160, 1078, 1588, 1934, 1999, 864, 442
Offset: 1

Views

Author

R. H. Hardin, Mar 28 2018

Keywords

Comments

Table starts
...1.1...1...1....1.....1......1.......1........1..........1...........1
...2.1...2...2....3.....6.....10......21.......42.........86.........179
...4.1...3...2....2.....7.....12......27.......62........160.........387
...8.1...7...5....8....40.....96.....316.....1078.......3831.......13331
..16.1..16..10...12....92....320....1588.....7234......34477......171770
..32.1..43..26...64...532...1934...14860....86638.....568382.....4029337
..64.1.117..65..196..1999...8781..104732...770376....7398173....75183520
.128.1.330.170..864.10150..49709..952467..8263384..113474387..1620307756
.256.1.935.442.3236.46226.253844.7931939.81388360.1622304450.32687652025

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..0..1
..1..1..1..1. .1..1..1..0. .1..1..1..0. .1..1..1..0. .0..1..0..1
..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..1
..1..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..0..1
..0..1..1..0. .0..1..1..0. .0..1..1..0. .1..1..1..0. .0..1..0..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 4 is A245306(n-1).
Row 2 is A240513(n-3).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = 3*a(n-1) +a(n-2) -4*a(n-3)
k=4: a(n) = 3*a(n-1) -3*a(n-3) +a(n-4)
k=5: a(n) = 4*a(n-1) +5*a(n-2) -20*a(n-3) -4*a(n-4) +16*a(n-5) for n>6
k=6: [order 20] for n>21
k=7: [order 30] for n>33
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
n=3: [order 30] for n>31

A302150 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2, 3 or 4 horizontally or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 2, 1, 8, 1, 2, 4, 1, 16, 1, 3, 5, 10, 1, 32, 1, 6, 11, 17, 28, 1, 64, 1, 10, 34, 56, 65, 84, 1, 128, 1, 21, 88, 255, 289, 257, 260, 1, 256, 1, 42, 271, 1038, 2005, 1529, 1025, 816, 1, 512, 1, 86, 798, 4771, 12212, 15999, 8152, 4097, 2576, 1, 1024, 1, 179
Offset: 1

Views

Author

R. H. Hardin, Apr 02 2018

Keywords

Comments

Table starts
...1.1....1.....1......1.......1.........1..........1............1
...2.1....2.....2......3.......6........10.........21...........42
...4.1....4.....5.....11......34........88........271..........798
...8.1...10....17.....56.....255......1038.......4771........21866
..16.1...28....65....289....2005.....12212......83092.......578398
..32.1...84...257...1529...15999....145150....1482725.....15902462
..64.1..260..1025...8152..128319...1728734...26544210....439103633
.128.1..816..4097..43676.1030709..20614702..476725579..12181287002
.256.1.2576.16385.234707.8283143.245896061.8575073202.338788296901

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..1..1. .0..1..1..1
..1..1..1..1. .1..1..1..0. .1..1..1..1. .1..1..1..1. .1..1..1..0
..0..1..1..0. .1..1..1..1. .0..1..1..0. .0..1..1..0. .1..1..1..0
..0..1..1..1. .0..1..1..1. .1..1..1..1. .1..1..1..1. .1..1..1..1
..0..1..1..0. .1..1..1..0. .1..1..1..0. .1..1..1..0. .0..1..1..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 4 is A052539(n-2).
Row 2 is A240513(n-3).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = 4*a(n-1) -2*a(n-2) -2*a(n-3)
k=4: a(n) = 5*a(n-1) -4*a(n-2) for n>3
k=5: [order 12]
k=6: [order 7] for n>9
k=7: [order 51] for n>54
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
n=3: [order 25] for n>27
n=4: [order 85] for n>89

A240649 T(n,k)=Number of nXk 0..1 arrays with no element equal to the same number of vertical neighbors as horizontal neighbors, with new values 0..1 introduced in row major order.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 6, 3, 3, 5, 6, 8, 8, 6, 5, 8, 10, 23, 18, 23, 10, 8, 13, 21, 60, 61, 61, 60, 21, 13, 21, 42, 149, 168, 232, 168, 149, 42, 21, 34, 86, 396, 526, 953, 953, 526, 396, 86, 34, 55, 179, 1050, 1643, 4343, 5304, 4343, 1643, 1050, 179, 55, 89, 370
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Comments

Table starts
..0...1....1.....2......3.......5.........8.........13..........21...........34
..1...2....2.....3......6......10........21.........42..........86..........179
..1...2....6.....8.....23......60.......149........396........1050.........2814
..2...3....8....18.....61.....168.......526.......1643........5524........18762
..3...6...23....61....232.....953......4343......19458.......90165.......421048
..5..10...60...168....953....5304.....29481.....168320......990468......5920658
..8..21..149...526...4343...29481....227270....1748201....14230080....116070258
.13..42..396..1643..19458..168320...1748201...18030130...191002776...2052931147
.21..86.1050..5524..90165..990468..14230080..191002776..2764522654..39961388170
.34.179.2814.18762.421048.5920658.116070258.2052931147.39961388170.770199142784

Examples

			Some solutions for n=4 k=4
..0..0..0..1....0..0..0..0....0..1..0..0....0..0..1..1....0..0..0..0
..1..1..1..1....1..0..1..1....0..1..1..1....1..1..0..0....1..1..0..1
..0..1..0..1....1..0..0..0....0..1..0..0....0..0..1..1....0..0..0..1
..0..1..0..1....1..0..1..1....1..1..1..1....1..1..0..0....1..1..0..1
		

Crossrefs

Column 1 is A000045(n-1)
Column 2 is A240513(n-2)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 20]
k=4: [order 48]

A240656 T(n,k)=Number of nXk 0..1 arrays with no element equal to exactly one horizontal or vertical neighbor, with new values 0..1 introduced in row major order.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 9, 3, 1, 1, 6, 17, 17, 6, 1, 1, 10, 43, 91, 43, 10, 1, 1, 21, 136, 352, 352, 136, 21, 1, 1, 42, 402, 1545, 2456, 1545, 402, 42, 1, 1, 86, 1180, 7154, 16629, 16629, 7154, 1180, 86, 1, 1, 179, 3518, 33269, 118863, 184819, 118863, 33269, 3518
Offset: 1

Views

Author

R. H. Hardin, Apr 09 2014

Keywords

Comments

Table starts
.1...1.....1......1........1..........1............1..............1
.1...2.....2......3........6.........10...........21.............42
.1...2.....9.....17.......43........136..........402...........1180
.1...3....17.....91......352.......1545.........7154..........33269
.1...6....43....352.....2456......16629.......118863.........863435
.1..10...136...1545....16629.....184819......2076117.......23697768
.1..21...402...7154...118863....2076117.....37066859......666849212
.1..42..1180..33269...863435...23697768....666849212....18940533171
.1..86..3518.154974..6296517..272201307..12062165754...540011330454
.1.179.10525.724237.46082534.3137010024.218944306666.15442088872458

Examples

			Some solutions for n=4 k=4
..0..0..0..0....0..0..0..0....0..1..1..0....0..1..1..1....0..1..1..1
..0..1..0..0....0..0..1..0....1..1..1..1....1..1..1..1....1..1..1..1
..0..0..1..1....0..0..0..0....1..1..0..1....1..1..1..1....1..1..1..0
..0..0..1..1....0..0..0..0....0..1..1..1....0..1..1..0....1..1..0..1
		

Crossrefs

Column 2 is A240513(n-2)

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=3: [order 15]
k=4: [order 50]
Previous Showing 11-20 of 22 results. Next