cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 53 results. Next

A280489 a(n) = gcd(n,A241909(n)).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 1, 15, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 5, 1, 1, 1, 1, 5, 3, 1, 1, 3, 1, 7, 3, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 1, 1, 15, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 1, 3, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 25, 1, 3, 1, 1, 15, 1, 1, 1, 1, 5, 3, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n,A241909(n)).
a(n) = n / A280488(n).
Other identities. For all n >= 1:
a(A241909(n)) = a(n).

A331596 Number of distinct prime factors of gcd(A122111(n), A241909(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Array[PrimeNu@ If[# == 1, 1, GCD @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 105] (* Michael De Vlieger, Jan 24 2020, after JungHwan Min at A122111. *)
  • PARI
    A331596(n) = omega(gcd(A122111(n), A241909(n)));

Formula

a(n) = A001221(A331596(n)) = A001221(gcd(A122111(n), A241909(n))).
a(n) = A001222(A331597(n)).

A331598 a(n) = A122111(n) / gcd(A122111(n),A241909(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 8, 1, 1, 1, 1, 1, 4, 2, 16, 1, 2, 9, 32, 5, 8, 1, 2, 1, 1, 4, 64, 3, 3, 1, 128, 8, 4, 1, 4, 1, 16, 1, 256, 1, 2, 27, 1, 16, 32, 1, 5, 1, 8, 32, 512, 1, 6, 1, 1024, 2, 1, 2, 8, 1, 64, 64, 2, 1, 3, 1, 2048, 5, 128, 9, 16, 1, 4, 7, 4096, 1, 12, 4, 8192, 128, 16, 1, 10, 3, 256, 256, 16384, 8, 2, 1, 1, 4, 9, 1, 32, 1, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Comments

It appears that these and the terms of A331599 have the same prime signatures, that is, A046523(a(n)) = A046523(A331599(n)) seems to hold for all n. However, the sequences are not equivalence-class-wise same: a(6) = a(12) = 2, whereas A331599(6) = 3 and A331599(12) = 5.

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, #1/GCD[#1, #2] & @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 90] (* Michael De Vlieger, Jan 25 2020, after JungHwan Min at A122111 *)
  • PARI
    A331598(n) = { my(u=A122111(n)); u/gcd(u, A241909(n)); };

Formula

a(n) = A122111(n)/A331598(n) = A122111(n) / gcd(A122111(n),A241909(n)).
a(n) = A331599(A241916(n)).

A331599 a(n) = A241909(n) / gcd(A122111(n),A241909(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 2, 9, 1, 5, 1, 27, 1, 1, 1, 1, 1, 25, 3, 81, 1, 7, 4, 243, 2, 125, 1, 5, 1, 1, 9, 729, 2, 5, 1, 2187, 27, 49, 1, 25, 1, 625, 1, 6561, 1, 11, 8, 1, 81, 3125, 1, 3, 1, 343, 243, 19683, 1, 35, 1, 59049, 5, 1, 3, 125, 1, 15625, 729, 5, 1, 7, 1, 177147, 2, 78125, 4, 625, 1, 121, 2, 531441, 1, 245, 9, 1594323, 2187, 2401, 1, 21
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Comments

It appears that these and the terms of A331598 have the same prime signatures, that is, A046523(a(n)) = A046523(A331598(n)) seems to hold for all n.

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, #2/GCD[#1, #2] & @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 90] (* Michael De Vlieger, Jan 24 2020, after JungHwan Min at A122111 *)
  • PARI
    A331599(n) = { my(u=A241909(n)); u/gcd(A122111(n), u); };

Formula

a(n) = A241909(n) / A331595(n) = A241909(n) / gcd(A122111(n),A241909(n)).
a(n) = A331598(A241916(n)).

A331731 Odd part of A331595(n), where A331595(n) = gcd(A122111(n), A241909(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 5, 1, 3, 9, 7, 1, 15, 1, 5, 9, 3, 1, 7, 3, 3, 5, 5, 1, 15, 1, 11, 9, 3, 9, 7, 1, 3, 9, 7, 1, 15, 1, 5, 25, 3, 1, 11, 3, 45, 9, 5, 1, 7, 27, 7, 9, 3, 1, 7, 1, 3, 25, 13, 27, 15, 1, 5, 9, 45, 1, 11, 1, 3, 15, 5, 9, 15, 1, 11, 7, 3, 1, 7, 27, 3, 9, 7, 1, 7, 27, 5, 9, 3, 27, 13, 1, 135, 25, 7, 1, 15, 1, 7, 75
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A000265(A331595(n)).

A369032 LCM-transform of permutation A241909.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 5, 1, 3, 2, 5, 2, 3, 1, 7, 2, 1, 2, 5, 1, 3, 2, 7, 1, 3, 1, 5, 2, 1, 2, 11, 1, 3, 1, 1, 2, 3, 1, 7, 2, 1, 2, 5, 1, 3, 2, 11, 1, 1, 1, 5, 2, 1, 1, 7, 1, 3, 2, 1, 2, 3, 1, 13, 1, 1, 2, 5, 1, 1, 2, 1, 2, 3, 1, 5, 1, 1, 2, 11, 1, 3, 2, 1, 1, 3, 1, 7, 2, 1, 1, 5, 1, 3, 1, 13, 2, 1, 1, 1, 2, 1, 2, 7, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

See comments in A368900.

Crossrefs

Programs

  • PARI
    up_to = 2^18;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m));
    v369032 = LCMtransform(vector(up_to,i,A241909(i)));
    A369032(n) = v369032[n];
    
  • PARI
    A014963(n) = { ispower(n, , &n); if(isprime(n), n, 1); };
    A369032(n) = A014963(A241909(n));

Formula

a(1) = 1, for n > 1, a(n) = lcm {1..A241909(n)} / lcm {1..A241909(n-1)}.
a(n) = A014963(A241909(n)). [A241909 satisfies the property S defined in A368900]

A279356 Permutation of natural numbers: a(n) = A241909(A249818(n)).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 5, 6, 27, 32, 25, 64, 81, 18, 7, 128, 15, 256, 125, 10, 243, 512, 49, 12, 729, 54, 625, 1024, 75, 2048, 11, 50, 2187, 36, 35, 4096, 6561, 162, 343, 8192, 375, 16384, 3125, 14, 19683, 32768, 121, 24, 45, 30, 15625, 65536, 21, 20, 2401, 250, 59049, 131072, 245, 262144, 177147, 486, 13, 108, 1875, 524288, 78125, 98, 225
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Inverse: A279355.

Formula

a(n) = A241909(A249818(n)).

A280488 a(n) = n / A280489(n) = n / gcd(n,A241909(n)).

Original entry on oeis.org

1, 1, 3, 4, 5, 2, 7, 8, 3, 10, 11, 12, 13, 14, 5, 16, 17, 6, 19, 4, 7, 22, 23, 24, 25, 26, 27, 28, 29, 2, 31, 32, 11, 34, 35, 36, 37, 38, 13, 40, 41, 14, 43, 44, 9, 46, 47, 48, 49, 10, 17, 52, 53, 18, 55, 8, 19, 58, 59, 12, 61, 62, 63, 64, 65, 22, 67, 68, 23, 14, 71, 72, 73, 74, 5, 76, 77, 26, 79, 80, 81, 82, 83, 12, 85, 86, 29, 88, 89, 30, 91, 92, 31
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2017

Keywords

Crossrefs

Programs

Formula

a(n) = n / A280489(n).

A331594 Number of prime factors (with multiplicity) of A331598(n), where A331598(n) = A122111(n) / gcd(A122111(n),A241909(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 3, 0, 0, 0, 0, 0, 2, 1, 4, 0, 1, 2, 5, 1, 3, 0, 1, 0, 0, 2, 6, 1, 1, 0, 7, 3, 2, 0, 2, 0, 4, 0, 8, 0, 1, 3, 0, 4, 5, 0, 1, 0, 3, 5, 9, 0, 2, 0, 10, 1, 0, 1, 3, 0, 6, 6, 1, 0, 1, 0, 11, 1, 7, 2, 4, 0, 2, 1, 12, 0, 3, 2, 13, 7, 4, 0, 2, 1, 8, 8, 14, 3, 1, 0, 0, 2, 2, 0, 5, 0, 5, 0
Offset: 1

Views

Author

Antti Karttunen, Jan 25 2020

Keywords

Comments

Apparently also the number of prime factors (with multiplicity) of A331599(n).

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 0, PrimeOmega[#1/GCD[#1, #2]] & @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 105] (* Michael De Vlieger, Jan 25 2020, after JungHwan Min at A122111 *)
  • PARI
    A331594(n) = bigomega(A331598(n));

Formula

a(n) = A001222(A331598(n)).

A331601 a(n) = A002487(A241909(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 3, 2, 8, 1, 7, 1, 14, 4, 3, 1, 4, 1, 11, 8, 22, 1, 9, 2, 64, 3, 43, 1, 18, 1, 5, 14, 110, 4, 9, 1, 162, 22, 47, 1, 34, 1, 127, 7, 440, 1, 13, 2, 12, 64, 191, 1, 8, 8, 97, 110, 1002, 1, 23, 1, 752, 11, 5, 14, 112, 1, 1249, 162, 16, 1, 17, 1, 610, 4, 897, 4, 220, 1, 111, 3, 4882, 1, 121, 22, 5494, 440, 281, 1, 26, 8, 7623, 1002
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m));
    A331601(n) = A002487(A241909(n));

Formula

a(n) = A002487(A241909(n)).
a(n) = A002487(A331732(n)).
Previous Showing 11-20 of 53 results. Next