cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A245454 Self-inverse permutation of nonnegative integers, A075158-conjugate of blue code: a(n) = 1 + A075157(A193231(A075158(n-1))).

Original entry on oeis.org

1, 2, 4, 3, 6, 5, 18, 8, 9, 25, 11, 16, 64, 14, 27, 12, 96, 7, 288, 21, 20, 243, 891, 45, 10, 405, 15, 162, 33750, 30, 78650, 75, 625, 2025, 35, 81, 390390, 224, 875, 250, 41, 375, 16384, 270, 24, 300125, 24576, 150, 125, 54, 6125, 1350, 73728, 50, 108, 350, 594, 140777, 5845851, 98, 221433750, 1446445, 343, 13
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Programs

Formula

a(n) = 1 + A075157(A193231(A075158(n-1))).

A356958 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (b-a+1, ..., y-a+1, z-a+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 2, 1, 3, 3, 5, 1, 1, 2, 1, 6, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 7, 2, 1, 2, 2, 8, 5, 1, 1, 3, 2, 4, 1, 5, 1, 2, 9, 1, 1, 1, 2, 1, 3, 3, 6, 1, 6, 2, 2, 2, 3, 1, 1, 4, 7, 10, 1, 2, 3, 11, 1, 3, 1, 1, 1, 1, 1, 4, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:   .
   2:   .
   3:   .
   4:   1
   5:   .
   6:   2
   7:   .
   8:  1 1
   9:   1
  10:   3
  11:   .
  12:  1 2
  13:   .
  14:   4
  15:   2
  16: 1 1 1
For example, the prime indices of 315 are (2,2,3,4), so row 315 is (2,3,4) - 2 + 1 = (1,2,3).
		

Crossrefs

Row lengths are A001222(n) - 1.
Indices of empty rows are A008578.
Even bisection is A112798.
Heinz numbers of rows are A246277.
An opposite version is A358172, Heinz numbers A358195.
Row sums are A359358(n) + A001222(n) - 1.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,{},1-First[primeMS[n]]+Rest[primeMS[n]]],{n,100}]

A358170 Heinz number of the partial sums of the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 2, 3, 6, 5, 15, 10, 30, 7, 35, 21, 105, 14, 70, 42, 210, 11, 77, 55, 385, 33, 231, 165, 1155, 22, 154, 110, 770, 66, 462, 330, 2310, 13, 143, 91, 1001, 65, 715, 455, 5005, 39, 429, 273, 3003, 195, 2145, 1365, 15015, 26, 286, 182, 2002, 130, 1430, 910, 10010
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
           1: {}
           2: {1}
           3: {2}
           6: {1,2}
           5: {3}
          15: {2,3}
          10: {1,3}
          30: {1,2,3}
           7: {4}
          35: {3,4}
          21: {2,4}
         105: {2,3,4}
          14: {1,4}
          70: {1,3,4}
          42: {1,2,4}
         210: {1,2,3,4}
		

Crossrefs

See link for sequences related to standard compositions.
Applying A001221 or A001222 gives A000120.
The image is A005117 (squarefree numbers).
The reverse version is A019565, triangular version A048793.
Greatest prime index of a(n) is A029837 or A070939.
Least prime index of a(n) is A065120.
The adjusted version is A253565, inverse A253566, reverse A005940.
These are the Heinz numbers of the rows of A358134.
Sum of prime indices of a(n) is A359042.
A066099 lists standard compositions.
A112798 list prime indices, sum A056239.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Times@@Prime/@#&/@Table[Accumulate[stc[n]],{n,0,100}]

A358172 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (z-a+1, z-b+1, ..., z-y+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 2, 2, 4, 2, 1, 1, 1, 2, 1, 3, 3, 3, 5, 2, 2, 2, 1, 6, 1, 1, 4, 4, 3, 2, 1, 1, 1, 1, 4, 7, 2, 2, 2, 1, 8, 5, 3, 3, 3, 4, 3, 5, 5, 2, 2, 9, 2, 2, 2, 2, 1, 3, 1, 6, 6, 6, 2, 1, 1, 3, 4, 4, 4, 7, 10, 3, 3, 2, 11, 3, 3, 1, 1, 1, 1, 1, 4, 5, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:   .
   2:   .
   3:   .
   4:   1
   5:   .
   6:   2
   7:   .
   8:  1 1
   9:   1
  10:   3
  11:   .
  12:  2 2
  13:   .
  14:   4
  15:   2
  16: 1 1 1
  17:   .
  18:  2 1
  19:   .
  20:  3 3
For example, the prime indices of 900 are (1,1,2,2,3,3), so row 900 is 3 - (1,1,2,2,3) + 1 = (3,3,2,2,1).
		

Crossrefs

Row lengths are A001222(n) - 1.
Indices of empty rows are A008578.
Even-indexed rows have sums A243503.
Row sums are A326844(n) + A001222(n) - 1.
An opposite version is A356958, Heinz numbers A246277.
Heinz numbers of the rows are A358195, even bisection A241916.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,{},1+Last[primeMS[n]]-Most[primeMS[n]]],{n,100}]

A359358 Let y be the integer partition with Heinz number n. Then a(n) is the size of the Young diagram of y after removing a rectangle of the same length as y and width equal to the smallest part of y.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 3, 1, 0, 0, 2, 0, 2, 2, 4, 0, 1, 0, 5, 0, 3, 0, 3, 0, 0, 3, 6, 1, 2, 0, 7, 4, 2, 0, 4, 0, 4, 1, 8, 0, 1, 0, 4, 5, 5, 0, 3, 2, 3, 6, 9, 0, 3, 0, 10, 2, 0, 3, 5, 0, 6, 7, 5, 0, 2, 0, 11, 2, 7, 1, 6, 0, 2, 0, 12, 0, 4, 4, 13
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2022

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 7865 is (6,5,5,3), which has the following diagram. The 3 X 4 rectangle is shown in dots.
  . . . o o o
  . . . o o
  . . . o o
  . . .
The size of the complement is 7, so a(7865) = 7.
		

Crossrefs

The opposite version is A326844.
Row sums of A356958 are a(n) + A001222(n) - 1, Heinz numbers A246277.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.
A326846 = size of the smallest rectangle containing the prime indices of n.
A358195 gives Heinz numbers of rows of A358172, even bisection A241916.

Programs

  • Mathematica
    Table[If[n==1,0,With[{q=Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]},Total[q]-q[[1]]*Length[q]]],{n,100}]

Formula

a(n) = A056239(n) - A001222(n) * A055396(n).
a(n) = A056239(n) - A359360(n).

A245451 Self-inverse permutation of nonnegative integers, A075158-conjugate of gray code: a(n) = 1 + A075157(A003188(A075158(n-1))).

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 16, 6, 5, 27, 32, 18, 64, 81, 25, 12, 128, 7, 256, 54, 125, 243, 512, 36, 10, 729, 15, 162, 1024, 49, 2048, 24, 625, 2187, 50, 14, 4096, 6561, 3125, 108, 8192, 343, 16384, 486, 75, 19683, 32768, 72, 20, 21, 15625, 1458, 65536, 35, 250, 324, 78125, 59049, 131072, 98, 262144, 177147, 375, 48
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A245452.
Similar permutations: A245454, A122111, A241909, A241916.

Programs

Formula

a(n) = 1 + A075157(A003188(A075158(n-1))).

A245452 Self-inverse permutation of nonnegative integers, A075158-conjugate of the inverse of gray code: a(n) = 1 + A075157(A006068(A075158(n-1))).

Original entry on oeis.org

1, 2, 4, 3, 9, 8, 18, 5, 6, 25, 75, 16, 150, 36, 27, 7, 735, 12, 1470, 49, 50, 245, 12705, 32, 15, 300, 10, 72, 25410, 125, 195195, 11, 225, 4235, 54, 24, 390390, 2940, 490, 121, 4339335, 100, 8678670, 847, 81, 65065, 92147055, 64, 30, 35, 2205, 600, 184294110, 20, 147, 144, 8470, 50820, 2565568005, 343, 5131136010, 1446445, 98, 13
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2014

Keywords

Crossrefs

Inverse: A245451.
Similar permutations: A245454, A122111, A241909, A241916.

Programs

Formula

a(n) = 1 + A075157(A006068(A075158(n-1))).

A331598 a(n) = A122111(n) / gcd(A122111(n),A241909(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 2, 1, 8, 1, 1, 1, 1, 1, 4, 2, 16, 1, 2, 9, 32, 5, 8, 1, 2, 1, 1, 4, 64, 3, 3, 1, 128, 8, 4, 1, 4, 1, 16, 1, 256, 1, 2, 27, 1, 16, 32, 1, 5, 1, 8, 32, 512, 1, 6, 1, 1024, 2, 1, 2, 8, 1, 64, 64, 2, 1, 3, 1, 2048, 5, 128, 9, 16, 1, 4, 7, 4096, 1, 12, 4, 8192, 128, 16, 1, 10, 3, 256, 256, 16384, 8, 2, 1, 1, 4, 9, 1, 32, 1, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Comments

It appears that these and the terms of A331599 have the same prime signatures, that is, A046523(a(n)) = A046523(A331599(n)) seems to hold for all n. However, the sequences are not equivalence-class-wise same: a(6) = a(12) = 2, whereas A331599(6) = 3 and A331599(12) = 5.

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, #1/GCD[#1, #2] & @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 90] (* Michael De Vlieger, Jan 25 2020, after JungHwan Min at A122111 *)
  • PARI
    A331598(n) = { my(u=A122111(n)); u/gcd(u, A241909(n)); };

Formula

a(n) = A122111(n)/A331598(n) = A122111(n) / gcd(A122111(n),A241909(n)).
a(n) = A331599(A241916(n)).

A331599 a(n) = A241909(n) / gcd(A122111(n),A241909(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 2, 9, 1, 5, 1, 27, 1, 1, 1, 1, 1, 25, 3, 81, 1, 7, 4, 243, 2, 125, 1, 5, 1, 1, 9, 729, 2, 5, 1, 2187, 27, 49, 1, 25, 1, 625, 1, 6561, 1, 11, 8, 1, 81, 3125, 1, 3, 1, 343, 243, 19683, 1, 35, 1, 59049, 5, 1, 3, 125, 1, 15625, 729, 5, 1, 7, 1, 177147, 2, 78125, 4, 625, 1, 121, 2, 531441, 1, 245, 9, 1594323, 2187, 2401, 1, 21
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Comments

It appears that these and the terms of A331598 have the same prime signatures, that is, A046523(a(n)) = A046523(A331598(n)) seems to hold for all n.

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, #2/GCD[#1, #2] & @@ {Block[{k = #, m = 0}, Times @@ Power @@@ Table[k -= m; k = DeleteCases[k, 0]; {Prime@ Length@ k, m = Min@ k}, Length@ Union@ k]] &@ Catenate[ConstantArray[PrimePi[#1], #2] & @@@ #], Function[t, Times @@ Prime@ Accumulate[If[Length@ t < 2, {0}, Join[{1}, ConstantArray[0, Length@ t - 2], {-1}]] + ReplacePart[t, Map[#1 -> #2 & @@ # &, #]]]]@ ConstantArray[0, Transpose[#][[1, -1]]] &[# /. {p_, e_} /; p > 0 :> {PrimePi@ p, e}]} &@ FactorInteger[#]] &, 90] (* Michael De Vlieger, Jan 24 2020, after JungHwan Min at A122111 *)
  • PARI
    A331599(n) = { my(u=A241909(n)); u/gcd(A122111(n), u); };

Formula

a(n) = A241909(n) / A331595(n) = A241909(n) / gcd(A122111(n),A241909(n)).
a(n) = A331598(A241916(n)).
Previous Showing 21-29 of 29 results.