cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A247688 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3), 3-principalization type (2143), IPAD [(3,9)^4], and Hilbert 3-class field tower of unknown length at least 3.

Original entry on oeis.org

12067, 49924, 54195, 60099, 83395, 86551, 91643, 93067, 96551
Offset: 1

Views

Author

Keywords

Comments

These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (2143), G.19, or equivalently by their transfer target type (TTT) [(3,9)^4] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG. The TKT (2143) is a permutation composed of two disjoint transpositions without fixed point.
For all these discriminants, the metabelianization of the 3-tower group is the unbalanced group SmallGroup(729, 57), whence it is completely open whether the tower must terminate at a finite stage or not. Consequently, these discriminants are among the foremost challenges of future research.
12067 has been discovered by Heider and Schmithals.

Examples

			Already the smallest term 12067 resists all attempts to determine the length of its Hilbert 3-class field tower.
		

References

  • F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
  • D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.

Crossrefs

Cf. A242862, A242863 (supersequences), and A242864, A242873 (disjoint sequences).

Programs

  • Magma
    for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (0 eq e) then d, ", "; end if; end if; end if; end for;

A247689 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and 3-principalization type (2241).

Original entry on oeis.org

4027, 8751, 19651, 21224, 22711, 24904, 26139, 28031, 28759, 34088, 36807, 40299, 40692, 41015, 42423, 43192, 44004, 45835, 46587, 48052, 49128, 49812, 50739, 50855, 51995, 55247, 55271, 55623, 70244, 72435, 77144, 78708, 81867, 85199, 87503, 87727, 88447, 91471, 91860, 92712, 94420, 95155, 97555, 98795, 99707, 99939
Offset: 1

Views

Author

Keywords

Comments

These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (2241), D.10, or equivalently by their transfer target type (TTT) [(3,3,3), (3,9)^3] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure. The TKT (2241) has a single fixed point and is not a permutation.
For all these discriminants, the 3-tower group is the metabelian Schur sigma-group SmallGroup(243, 5) and the Hilbert 3-class field tower terminates at the second stage.
4027 is discussed very thoroughly by Scholz and Taussky.

Crossrefs

Cf. A242862, A242863, A242864 (supersequences), and A247690, A242873 (disjoint sequences).

Programs

  • Magma
    for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (1 eq e) then d, ", "; end if; end if; end if; end for;

A247690 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) and 3-principalization type (4224).

Original entry on oeis.org

12131, 19187, 20276, 20568, 24340, 26760, 31639, 31999, 32968, 34507, 35367, 41583, 41671, 43307, 57079, 64196, 73731, 85796, 87720, 93823, 95691
Offset: 1

Views

Author

Keywords

Comments

These fields are characterized either by their 3-principalization type (transfer kernel type, TKT) (4224), D.5, or equivalently by their transfer target type (TTT) [(3,3,3)^2, (3,9)^2] (called IPAD by Boston, Bush, Hajir). The latter is used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure. The TKT (4224) has two fixed points and is not a permutation.
For all these discriminants, the 3-tower group is the metabelian Schur sigma-group SmallGroup(243, 7) and the Hilbert 3-class field tower terminates at the second stage.
12131 has been discovered by Heider and Schmithals.

References

  • F.-P. Heider, B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. reine angew. Math. 336 (1982), 1 - 25.
  • D. C. Mayer, "The distribution of second p-class groups on coclass graphs", J. Théor. Nombres Bordeaux 25 (2) (2013), 401-456.

Crossrefs

Cf. A242862, A242863, A242864 (supersequences), and A247689, A242873 (disjoint sequences).

Programs

  • Magma
    for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; e := 0; for j in [1..#sO] do CO := ClassGroup(sO[j]); if (3 eq Valuation(#CO, 3)) then if ([3, 3, 3] eq pPrimaryInvariants(CO, 3)) then e := e+1; end if; else g := false; end if; end for; if (true eq g) and (2 eq e) then d, ", "; end if; end if; end if; end for;

A244574 Absolute discriminants of complex quadratic fields with 3-class rank 3 and thus with infinite class tower.

Original entry on oeis.org

3321607, 3640387, 4019207, 4447704, 4472360, 4818916, 4897363, 5048347, 5067967, 5153431, 5288968, 5769988, 6562327, 7016747, 7060148, 7503391, 7546164, 8124503, 8180671, 8721735, 8819519, 8992363, 9379703, 9487991, 9778603
Offset: 1

Views

Author

Keywords

Comments

Diaz y Diaz discovered a(1), a(2) and three other terms in 1973. However, Buell was the first who proved minimality of a(1). According to Koch and Venkov, 3-class rank 3 ensures an infinite Hilbert (3-)class field tower.
The first 25 terms were computed with MAGMA over 18 hours of CPU time.
With exception of a(16)=7503391, all terms below 10^7 and lots of further terms below 10^8 are given in Appendice 1, pp. 66-77, of the Thesis of F. Diaz y Diaz (1978). - Daniel Constantin Mayer, Sep 27 2014

Examples

			3-class group of type (9,3,3) for a(1)=3321607, and of type (3,3,3) for a(4)=4447704. Unique 3-class group of type (27,3,3) for a(10)=5153431.
		

References

  • F. Diaz y Diaz, Sur le 3-rang des corps quadratiques, Publ. math. d'Orsay, No. 78-11, Univ. Paris-Sud (1978).

Crossrefs

Cf. A242862, A244575 (a subsequence).

Programs

  • Magma
    for d := 1 to 10^7 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C := ClassGroup(K); if (3 eq #pPrimaryInvariants(C,3)) then d,","; end if; end if; end for;

A380102 Minimal absolute discriminants |d| of imaginary quadratic number fields K = Q(sqrt(d)), d < 0, with elementary bicyclic 3-class group Cl_3(K)=(3,3) and second 3-class group M=Gal(F_3^2(K)/K) of assigned even coclass cc(M)=2,4,6,8,...

Original entry on oeis.org

3896, 27156, 423640, 99888340
Offset: 1

Views

Author

Keywords

Comments

The coclass cc(M) for the field K with discriminant d = -a(n) is 2*n, and for each field K with absolute discriminant |d| < a(n), the coclass cc(M) is less than 2*n.

Examples

			The coclass cannot be odd for imaginary quadratic fields. We have cc(M)=2 for d=-3896, cc(M)=4 for d=-27156, cc(M)=6 for d=-423640, cc(M)=8 for d=-99888340.
		

Crossrefs

Cf. A242862, A242863 (supersequences). Analog of A379524 for real quadratic fields.

Programs

  • Magma
    // See Links section.

Formula

According to Theorem 3.12 on page 435 of "The distribution of second p-class groups on coclass graphs", the coclass of the group M is given by cc(M)+1=log_3(h_3(L_2)), where h_3(L_2) is the second largest 3-class number among the four unramified cyclic cubic extensions L_1,..,L_4 of the quadratic field K, and log_3 denotes the logarithm with respect to the basis 3.

A247691 Absolute discriminants of complex quadratic fields with 3-class group of type (3,3) whose second 3-class group is located on the sporadic part of the coclass graph G(3,2) outside of coclass trees.

Original entry on oeis.org

3896, 4027, 6583, 8751, 12067, 12131, 19187, 19651, 20276, 20568, 21224, 22711, 23428, 24340, 24904, 25447, 26139, 26760, 27355, 27991, 28031, 28759, 31639, 31999, 32968, 34088, 34507, 35367, 36276, 36807, 37219, 37540, 39819, 40299, 40692, 41015, 41063, 41583, 41671, 42423, 43192
Offset: 1

Views

Author

Keywords

Comments

These fields are characterized either by their 3-principalization types (transfer kernel types, TKTs) (2143), G.19, (2241), D.10, (4224), D.5, (4443), H.4, or equivalently by their transfer target types (TTTs) [(3,9)^4], [(3,3,3), (3,9)^3], [(3,3,3)^2, (3,9)^2], [(3,3,3)^3, (3,9)] (called IPADs by Boston, Bush, Hajir). The latter are used in the MAGMA PROG, which essentially constitutes the principalization algorithm via class group structure.

Crossrefs

Cf. A242862, A242863 (supersequences), A242864, A242873, A247688 (subsequences), and A242878 (disjoint sequence).

Programs

  • Magma
    for d := 2 to 10^5 do a := false; if (3 eq d mod 4) and IsSquarefree(d) then a := true; end if; if (0 eq d mod 4) then r := d div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (1 eq r mod 4)) then a := true; end if; end if; if (true eq a) then K := QuadraticField(-d); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then E := AbelianExtension(mC); sS := Subgroups(C: Quot := [3]); sA := [AbelianExtension(Inverse(mQ)*mC) where Q, mQ := quo: x in sS]; sN := [NumberField(x): x in sA]; sF := [AbsoluteField(x): x in sN]; sM := [MaximalOrder(x): x in sF]; sM := [OptimizedRepresentation(x): x in sF]; sA := [NumberField(DefiningPolynomial(x)): x in sM]; sO := [Simplify(LLL(MaximalOrder(x))): x in sA]; delete sA, sN, sF, sM; g := true; for j in [1..#sO] do CO := ClassGroup(sO[j]); if not (3 eq Valuation(#CO, 3)) then g := false; end if; end for; if (true eq g) then d, ", "; end if; end if; end if; end for;
Previous Showing 11-16 of 16 results.