cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A321780 Number of compositions of n into parts with distinct multiplicities and with exactly ten parts.

Original entry on oeis.org

1, 10, 55, 130, 625, 1570, 2845, 7930, 8110, 12920, 20336, 71420, 65030, 139100, 161240, 198140, 228155, 370580, 325905, 503610, 490281, 664830, 685845, 967230, 880980, 1237470, 1236930, 1519300, 1533610, 2000980, 1851166, 2416240, 2370835, 2851480, 2888155
Offset: 10

Views

Author

Alois P. Heinz, Nov 18 2018

Keywords

Crossrefs

Column k=10 of A242887.

A325550 Number of necklace compositions of n with distinct multiplicities.

Original entry on oeis.org

1, 2, 2, 4, 5, 7, 11, 16, 18, 41, 86, 118, 273, 465, 731, 1432, 2791, 4063, 8429, 14761, 29465, 58654, 123799, 227419, 453229, 861909, 1697645, 3192807, 6315007, 11718879, 22795272, 42965245, 83615516, 156215020, 306561088, 587300503, 1140650287, 2203107028
Offset: 1

Views

Author

Gus Wiseman, May 10 2019

Keywords

Comments

A necklace composition of n is a finite sequence of positive integers summing to n that is lexicographically minimal among all of its cyclic rotations.

Examples

			The a(1) = 1 through a(8) = 16 necklace compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (113)    (33)      (115)      (44)
                    (112)   (122)    (114)     (133)      (116)
                    (1111)  (1112)   (222)     (223)      (224)
                            (11111)  (1113)    (1114)     (233)
                                     (11112)   (1222)     (1115)
                                     (111111)  (11113)    (2222)
                                               (11122)    (11114)
                                               (11212)    (11222)
                                               (111112)   (12122)
                                               (1111111)  (111113)
                                                          (111122)
                                                          (111212)
                                                          (112112)
                                                          (1111112)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Length/@Split[Sort[#]]&]],{n,15}]
  • PARI
    b(n)={((r,k,b,w)->if(!k||!r, if(r,0,(w-1)!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019

Formula

a(n) = Sum_{d|n} phi(d)*(Sum_{k=1..n/d} A242887(n/d, k)/k)/d. - Andrew Howroyd, Aug 31 2019

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 31 2019
Previous Showing 11-12 of 12 results.