A321780
Number of compositions of n into parts with distinct multiplicities and with exactly ten parts.
Original entry on oeis.org
1, 10, 55, 130, 625, 1570, 2845, 7930, 8110, 12920, 20336, 71420, 65030, 139100, 161240, 198140, 228155, 370580, 325905, 503610, 490281, 664830, 685845, 967230, 880980, 1237470, 1236930, 1519300, 1533610, 2000980, 1851166, 2416240, 2370835, 2851480, 2888155
Offset: 10
A325550
Number of necklace compositions of n with distinct multiplicities.
Original entry on oeis.org
1, 2, 2, 4, 5, 7, 11, 16, 18, 41, 86, 118, 273, 465, 731, 1432, 2791, 4063, 8429, 14761, 29465, 58654, 123799, 227419, 453229, 861909, 1697645, 3192807, 6315007, 11718879, 22795272, 42965245, 83615516, 156215020, 306561088, 587300503, 1140650287, 2203107028
Offset: 1
The a(1) = 1 through a(8) = 16 necklace compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (113) (33) (115) (44)
(112) (122) (114) (133) (116)
(1111) (1112) (222) (223) (224)
(11111) (1113) (1114) (233)
(11112) (1222) (1115)
(111111) (11113) (2222)
(11122) (11114)
(11212) (11222)
(111112) (12122)
(1111111) (111113)
(111122)
(111212)
(112112)
(1111112)
(11111111)
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Length/@Split[Sort[#]]&]],{n,15}]
-
b(n)={((r,k,b,w)->if(!k||!r, if(r,0,(w-1)!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019
Comments