cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A087691 Squares of primes of the form 4*k+3.

Original entry on oeis.org

9, 49, 121, 361, 529, 961, 1849, 2209, 3481, 4489, 5041, 6241, 6889, 10609, 11449, 16129, 17161, 19321, 22801, 26569, 27889, 32041, 36481, 39601, 44521, 49729, 51529, 57121, 63001, 69169, 73441, 80089, 94249, 96721, 109561, 120409, 128881
Offset: 1

Views

Author

Cino Hilliard, Sep 27 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[4*Range[0,100]+3,PrimeQ]^2 (* Harvey P. Dale, Sep 10 2012 *)
  • PARI
    p4np3(n)= forprime(x=3,n,if(x%4==3,y=x*x; print1(y, ", ")));

Formula

a(n) = A002145(n)^2.
a(n) ~ 4n^2 * (log n)^2. - Charles R Greathouse IV, Sep 20 2016
From Amiram Eldar, Dec 02 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A243381.
Product_{n>=1} (1 - 1/a(n)) = A243379. (End)

Extensions

More terms from Ray Chandler, Oct 26 2003

A327122 Expansion of Sum_{k>=1} sigma(k) * x^k / (1 + x^(2*k)), where sigma = A000203.

Original entry on oeis.org

1, 3, 3, 7, 7, 9, 7, 15, 10, 21, 11, 21, 15, 21, 21, 31, 19, 30, 19, 49, 21, 33, 23, 45, 38, 45, 30, 49, 31, 63, 31, 63, 33, 57, 49, 70, 39, 57, 45, 105, 43, 63, 43, 77, 70, 69, 47, 93, 50, 114, 57, 105, 55, 90, 77, 105, 57, 93, 59, 147, 63, 93, 70, 127, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A050469.

Crossrefs

Programs

  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[1, k] x^k/(1 + x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    A050469[n_] := DivisorSum[n, # &, MemberQ[{1}, Mod[n/#, 4]] &] - DivisorSum[n, # &, MemberQ[{3}, Mod[n/#, 4]] &]; a[n_] := DivisorSum[n, A050469[#] &]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := If[Mod[p, 4] == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))]; f[2, e_] := 2^(e+1)-1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* Amiram Eldar, Aug 28 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; if(p == 2, 2^(e+1)-1, if(p%4 == 1, (p^(e+2)-(e+2)*p+e+1)/(p-1)^2, (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1))))); } \\ Amiram Eldar, Aug 28 2023

Formula

a(n) = Sum_{d|n} A050469(d).
From Amiram Eldar, Aug 28 2023: (Start)
Multiplicative with a(2^e) = 2^(e+1)-1, and if p is an odd prime a(p^e) = (p^(e+2)-(e+2)*p+e+1)/(p-1)^2 if p == 1 (mod 4) and (2*p^(e+2) + ((-1)^e-1)*p - ((-1)^e+1))/(2*(p^2-1)) otherwise.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/12 * (A175647/A243381) = 0.753351504961... . (End)
Previous Showing 11-12 of 12 results.