cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A091958 Triangle read by rows: T(n,k)=number of ordered trees with n edges and k branch nodes at odd height.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 5, 21, 21, 51, 78, 3, 127, 274, 28, 323, 927, 180, 835, 3061, 954, 12, 2188, 9933, 4510, 165, 5798, 31824, 19734, 1430, 15511, 100972, 81684, 9790, 55, 41835, 317942, 324246, 57876, 1001, 113634, 995088, 1245762, 309036, 10920
Offset: 0

Views

Author

Emeric Deutsch, Mar 13 2004

Keywords

Comments

T(3n,n) = binomial(3n,n)/(2n+1) = A001764(n); T(n,0) = A001006(n) (the Motzkin numbers); T(n,1) = A055219(n-3) (n>=3; most probably); Row sums are the Catalan numbers (A000108).
T(n,k) = number of ordered trees on n edges with k vertices of outdegree at least 3; T(n,k) = number of ordered trees on n edges with k vertices V such that V's rightmost descendant leaf is at distance exactly 3 from V. - David Callan, Oct 24 2004
T(n,k) is the number of Dyck n-paths containing k UUUDs. For example, T(6,2) = 3 because UUUDUUUDDDDD, UUUDDUUUDDDD, UUUDDDUUUDDD each contains 2 UUUDs. - David Callan, Nov 04 2004

Examples

			T(3,1) = 1 because the only tree having 3 edges and 1 branch node at an odd level is the tree having the shape of the letter Y.
Triangle begins:
1;
1;
2;
4,       1;
9,       5;
21,     21;
51,     78,    3;
127,   274,   28;
323,   927,  180;
835,  3061,  954,  12;
2188, 9933, 4510, 165;
		

Crossrefs

Topmost entries in each column form A001764=( binomial(3n, n)/(2n+1) )A025174=(%20binomial(3n+2,%20n)%20)">(n>=0), next to topmost entries form A025174=( binomial(3n+2, n) )(n>=0), next lower entries are given by ( (n+2)binomial(3n+4, n) )_(n>=0).

Programs

  • Maple
    T := (n,k)->binomial((n+1),k)*sum((-1)^j*binomial(n+1-k,j)*binomial(2*n-3*k-3*j,n),j=0..floor(n/3)-k)/(n+1): seq(seq(T(n,k),k=0..floor(n/3)),n=0..18);
    # second Maple program:
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 4, 4][t])
          +b(x-1, y-1, [1, 1, 1, 1][t])*`if`(t=4, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    Clear[a]; a[n_, k_]/;k>n/3 || k<0 := 0; a[n_, 0]/;0<=n<=1 := 1; a[n_, 0]/;n>=2 := a[n, 0] = ((2*n + 1)*a[n-1, 0] + 3*(n - 1)*a[n-2, 0])/(n + 2); a[n_, k_]/;1<=k<=n/3 && n>=2 := a[n, k] = ( (12 - 9*k + 3*n)*a[n-2, k-2] - (12 - 18*k + 3*n)*a[ n-2, k-1] - 9*k*a[ n-2, k] + (4 - 6*k + 4*n)*a[n-1, k-1] + 6*k*a[n-1, k] - (2 - k + n)*a[n, k-1] )/k; Table[a[n, k], {n, 0, 16}, {k, 0, n/3}] (Callan)
    T[n_, k_] := (2*n-3*k)!*HypergeometricPFQ[{k-n-1, k-n/3, 1/3+k-n/3, 2/3+k-n/3}, {k-2*n/3, 1/3+k-2*n/3, 2/3+k-2*n/3}, 1]/(k!*(n-k+1)!*(n-3*k)!); Table[T[n, k], {n, 0, 15}, {k, 0, n/3}] // Flatten (* Jean-François Alcover, Mar 31 2015 *)

Formula

T(n,k) = binomial((n+1), k)*sum((-1)^j*binomial(n+1-k,j)*binomial(2n-3k-3j, n), j=0..floor(n/3)-k)/(n+1). G.f.: G=G(t,z) satisfies (t-1)z^3 G^3 + zG^2 - G + 1 = 0.

A092107 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n having exactly k UUU's (triple rises) where U=(1,1). Rows have 1,1,1,2,3,4,5,... entries, respectively.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 4, 1, 21, 15, 5, 1, 51, 50, 24, 6, 1, 127, 161, 98, 35, 7, 1, 323, 504, 378, 168, 48, 8, 1, 835, 1554, 1386, 750, 264, 63, 9, 1, 2188, 4740, 4920, 3132, 1335, 390, 80, 10, 1, 5798, 14355, 17028, 12507, 6237, 2200, 550, 99, 11, 1, 15511, 43252, 57816
Offset: 0

Views

Author

Emeric Deutsch, Mar 29 2004

Keywords

Comments

Column 0 gives the Motzkin numbers (A001006), column 1 gives A014532. Row sums are the Catalan numbers (A000108).
Equal to A171380*B (without the zeros), B = A007318. - Philippe Deléham, Dec 10 2009

Examples

			T(5,2) = 5 because we have (U[UU)U]DUDDDD, (U[UU)U]DDUDDD, (U[UU)U]DDDUDD, (U[UU)U]DDDDUD and UD(U[UU)U]DDDD, where U=(1,1), D=(1,-1); the triple rises are shown between parentheses.
[1],[1],[2],[4, 1],[9, 4, 1],[21, 15, 5, 1],[51, 50, 24, 6, 1],[127, 161, 98, 35, 7, 1]
Triangle starts:
     1;
     1;
     2;
     4,    1;
     9,    4,    1;
    21,   15,    5,    1;
    51,   50,   24,    6,    1;
   127,  161,   98,   35,    7,    1;
   323,  504,  378,  168,   48,    8,    1;
   835, 1554, 1386,  750,  264,   63,    9,    1;
  2188, 4740, 4920, 3132, 1335,  390,   80,   10,    1;
  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, expand(b(x-1, y-1, min(t+1,2))*
          `if`(t=2, z, 1) +b(x-1, y+1, 0))))
        end:
    T:= n->(p->seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 0)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Mar 11 2014
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, Expand[b[x-1, y-1, Min[t+1, 2]]*If[t == 2, z, 1] + b[x-1, y+1, 0]]]]; T[n_] := Function[{p}, Table[ Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[2*n, 0, 0]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 29 2015, after Alois P. Heinz *)

Formula

G.f.: G(t, z) satisfies z(t+z-tz)G^2 - (1-z+tz)G + 1 = 0.
Sum_{k=0..n} T(n,k)*x^k = A001405(n), A001006(n), A000108(n), A033321(n) for x = -1, 0, 1, 2 respectively. - Philippe Deléham, Dec 10 2009

A098978 Triangle read by rows: T(n,k) is number of Dyck n-paths with k UUDDs, 0 <= k <= n/2.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 8, 1, 13, 23, 6, 35, 69, 27, 1, 97, 212, 110, 10, 275, 662, 426, 66, 1, 794, 2091, 1602, 360, 15, 2327, 6661, 5912, 1760, 135, 1, 6905, 21359, 21534, 8022, 945, 21, 20705, 68850, 77685, 34840, 5685, 246, 1, 62642, 222892, 278192, 146092
Offset: 0

Views

Author

David Callan, Oct 24 2004

Keywords

Comments

T(n,k) is the number of Łukasiewicz paths of length n having k peaks. A Łukasiewicz path of length n is a path in the first quadrant from (0,0) to (n,0) using rise steps (1,k) for any positive integer k, level steps (1,0) and fall steps (1,-1). Example: T(3,1)=3 because we have HUD, UDH and U(2)DD, where H=(1,0), U(1,1), U(2)=(1,2) and D=(1,-1). (see R. P. Stanley reference). - Emeric Deutsch, Jan 06 2005

Examples

			Table begins
\ k  0,   1,   2, ...
n
0 |  1;
1 |  1;
2 |  1,   1;
3 |  2,   3;
4 |  5,   8,   1;
5 | 13,  23,   6;
6 | 35,  69,  27,  1;
7 | 97, 212, 110, 10;
8 |275, 662, 426, 66, 1;
T(3,1) = 3 because each of UUUDDD, UDUUDD, UUDDUD has one UUDD.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999, p. 223, Exercise 6.19w; the integers are the slopes of the steps. - Emeric Deutsch, Jan 06 2005

Crossrefs

Column k=0 is A025242 (apart from first term).
Cf. A243752.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 3, 2][t])
          +b(x-1, y-1, [1, 1, 4, 1][t])*`if`(t=4, z, 1))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    T[n_, k_] := Binomial[n-k, k] Binomial[2n-3k, n-k-1] HypergeometricPFQ[{k -n/2-1/2, k-n/2, k-n/2, k-n/2+1/2}, {k-2n/3, k-2n/3+1/3, k-2n/3+2/3}, 16/27]/(n-k); T[0, 0] = 1; Flatten[Table[T[n, k], {n, 0, 15}, {k, 0, n/2}]] (* Jean-François Alcover, Dec 21 2016, after 2nd formula *)

Formula

G.f.: (1 + z^2 - t*z^2 - (-4*z + (-1 - z^2 + t*z^2)^2)^(1/2))/(2*z) = Sum_{n>=0, 0<=k<=n/2} T(n, k)z^n*t^k and it satisfies G = 1 + G^2*z + G*(-z^2 + t*z^2).
T(n,k) = Sum_{j=0..floor(n/2)-k} (-1)^j * binomial(n-(j+k), j+k) * binomial(2n-3(j+k), n-(j+k)-1) * binomial(j+k, k)/(n-(j+k)). - I. Tasoulas (jtas(AT)unipi.gr), Feb 19 2006

A114848 Triangle read by rows T(n,k) = the number of Dyck paths of semilength n with k UUDDU's, 0<=k<=[(n-1)/2].

Original entry on oeis.org

1, 1, 2, 4, 1, 10, 4, 28, 13, 1, 82, 44, 6, 248, 153, 27, 1, 770, 536, 116, 8, 2440, 1889, 486, 46, 1, 7858, 6696, 1992, 240, 10, 25644, 23849, 8042, 1180, 70, 1, 84618, 85276, 32124, 5552, 430, 12, 281844, 305933, 127287, 25306, 2430, 99, 1, 946338, 1100692
Offset: 0

Views

Author

I. Tasoulas (jtas(AT)unipi.gr), Feb 20 2006

Keywords

Comments

Row sums are Catalan numbers A000108.

Examples

			T(4,1) = 4 because there exist 4 Dyck paths with one occurrence of UUDDU : UDUUDDUD, UUDDUDUD, UUDDUUDD, UUUDDUDD.
Triangle begins:
:  0 :     1;
:  1 :     1;
:  2 :     2;
:  3 :     4,     1;
:  4 :    10,     4;
:  5 :    28,    13,     1;
:  6 :    82,    44,     6;
:  7 :   248,   153,    27,    1;
:  8 :   770,   536,   116,    8;
:  9 :  2440,  1889,   486,   46,   1;
: 10 :  7858,  6696,  1992,  240,  10;
: 11 : 25644, 23849,  8042, 1180,  70,  1;
: 12 : 84618, 85276, 32124, 5552, 430, 12;
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 3, 3, 2, 2][t])
          *`if`(t=5, z, 1) +b(x-1, y-1, [1, 1, 4, 5, 1][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 10 2014
  • Mathematica
    For[n = 1, n <= 20, n++, For[k = 0, k <= Floor[(n - 1)/2], k++, Print[Sum[(-1)^j * Binomial[n - 1 - (j + k), j + k] * Binomial[j + k, k] * Binomial[2(n - 2(j + k)), n - 2(j + k)]/(n - 2(j + k) + 1), {j, 0, Floor[(n - 1)/2] - k}]]]]

Formula

T(n,k) = Sum((-1)^j * binomial(n-1-(j+k), j+k) * binomial(j + k, k) * A000108(n-2(j+k)), j=0..[(n-1)/2]-k).
G.f. G = G(t,z) satisfies G = C(z/(z^2(1-t)+1)), where C(z) is g.f. of Catalan numbers.

A116424 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDUU's, 0 <= k <= floor((n-1)/2).

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 5, 22, 19, 1, 57, 66, 9, 154, 221, 53, 1, 429, 729, 258, 14, 1223, 2391, 1131, 116, 1, 3550, 7829, 4652, 745, 20, 10455, 25638, 18357, 4115, 220, 1, 31160, 84033, 70404, 20598, 1790, 27, 93802, 275765, 264563, 96286, 12104, 379, 1, 284789
Offset: 0

Views

Author

I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006

Keywords

Comments

T(n,k) also gives the number of Dyck paths of semilength n with k UUDU's.
Column k=0 gives A105633(n-1) for n > 0.

Examples

			Triangle begins:
00 :     1;
01 :     1;
02 :     2;
03 :     4,    1;
04 :     9,    5;
05 :    22,   19,    1;
06 :    57,   66,    9;
07 :   154,  221,   53,   1;
08 :   429,  729,  258,  14;
09 :  1223, 2391, 1131, 116,  1;
10 :  3550, 7829, 4652, 745, 20;
...
T(4,1) = 5 because there exist five Dyck paths of semilength 4 with one occurrence of UDUU : UDUUUDDD, UDUUDUDD, UDUUDDUD, UUDUUDDD, UDUDUUDD.
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, expand(b(x-1, y+1, [2, 2, 4, 2][t])*
         `if`(t=4, z, 1) +b(x-1, y-1, [1, 3, 1, 3][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..15);  # Alois P. Heinz, Jun 02 2014
  • Mathematica
    s = Series[((1 + (t - 1) z^2) - Sqrt[(1 + (t - 1) z^2)^2 - 4*z*(1 - z + z*t)])/(2*z*(1 - z + z*t)), {z, 0, 15}] // CoefficientList[#, z]&;
    CoefficientList[#, t]& /@ s // Flatten (* updated by Jean-François Alcover, Feb 14 2021 *)

Formula

T(n,k) = Sum_{i=k..floor((n-1)/2)} (-1)^(i+k) * binomial(i,k) * binomial(n-i,i) * binomial(2*n-3*i, n - 2*i -1)/(n-i), n >= 1.
G.f. G = G(t,z) satisfies G = 1 + z^2(1-t)G + z(1-z+tz)G^2.

A135306 Triangle read by rows: T(n,k) = the number of Dyck paths of semilength n with k UDDU's.

Original entry on oeis.org

1, 1, 2, 4, 1, 9, 5, 23, 17, 2, 63, 54, 15, 178, 177, 69, 5, 514, 594, 273, 49, 1515, 1997, 1056, 280, 14, 4545, 6698, 4077, 1308, 168, 13827, 22487, 15545, 5745, 1140, 42, 42540, 75701, 58377, 24695, 6105, 594, 132124, 255455, 216864, 103862, 29810
Offset: 0

Views

Author

N. J. A. Sloane, Dec 07 2007

Keywords

Comments

From Emeric Deutsch, Dec 15 2007: (Start)
Row 0 has 1 term; row n (n >= 1) has ceiling(n/2) terms.
Row sums yield the Catalan numbers (A000108).
Column 0 yields A135307.
T(2n+1, n) = binomial(2n,n)/(n+1) (the Catalan numbers, A000108). (End)

Examples

			Triangle begins:
     1;
     1;
     2;
     4,    1;
     9,    5;
    23,   17,    2;
    63,   54,   15;
   178,  177,   69,    5;
   514,  594,  273,   49;
  1515, 1997, 1056,  280,   14;
  4545, 6698, 4077, 1308,  168;
  ...
T(4,1) = 5 because we have U(UDDU)DUD, U(UDDU)UDD, UU(UDDU)DD, UDU(UDDU)D and UUD(UDDU)D (the UDDU's are shown between parentheses).
		

Crossrefs

Programs

  • Maple
    A135306 := proc(n,k) if n =0 then 1 ; else add((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((n-1)/2)) ; %*binomial(n,k)/n ; fi ; end: for n from 0 to 20 do for k from 0 to max(0,(n-1)/2) do printf("%a, ",A135306(n,k)) ; od: od: # R. J. Mathar, Dec 08 2007
    T:=proc(n,k) options operator, arrow: binomial(n,k)*(sum((-1)^(j-k)*binomial(n-k,j-k)*binomial(2*n-3*j,n-j+1),j=k..floor((1/2)*n-1/2)))/n end proc: 1; for n to 13 do seq(T(n,k),k=0..ceil((n-2)*1/2)) end do; # yields sequence in triangular form; Emeric Deutsch, Dec 15 2007
  • Mathematica
    T[n_, k_] := Binomial[n, k]*Sum[(-1)^(j-k)*Binomial[n-k, j-k]*Binomial[2*n - 3*j, -j+n+1], {j, k, (n-1)/2}]/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 13}, {k, 0, If[n == 0, 0, Quotient[n-1, 2]]}] // Flatten (* Jean-François Alcover, Nov 27 2014, after Emeric Deutsch *)

Formula

From Emeric Deutsch, Dec 15 2007: (Start)
T(n,k) = (1/n)*binomial(n,k)*Sum_{j=k..floor((n-1)/2)} (-1)^(j-k)*binomial(n-k, j-k)*binomial(2n-3j, n-j+1).
G.f.: G = G(t,z) satisfies z*G^3 - ((1-t)*z+1)*G^2 + (1+2*(1-t)*z)*G - (1-t)*z = 0. (End)

Extensions

More terms from R. J. Mathar and Emeric Deutsch, Dec 08 2007

A242450 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UUDDUDUUUUDUDDDDUUDD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/8)), read by rows.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 1, 58783, 3, 208002, 10, 742865, 35, 2674314, 126, 9694383, 462, 35355954, 1716, 129638355, 6435, 477614391, 24308, 1, 1767170815, 92372, 3, 6563767715, 352694, 11, 24464914983, 1351996, 41, 91477363496, 5199988
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2014

Keywords

Comments

UUDDUDUUUUDUDDDDUUDD is a Dyck path that contains all sixteen consecutive step patterns of length 4.

Examples

			Triangle T(n,k) begins:
:  0 :           1;
:  1 :           1;
:  2 :           2;
:  3 :           5;
:  4 :          14;
:  5 :          42;
:  6 :         132;
:  7 :         429;
:  8 :        1430;
:  9 :        4862;
: 10 :       16795,       1;
: 11 :       58783,       3;
: 12 :      208002,      10;
: 13 :      742865,      35;
: 14 :     2674314,     126;
: 15 :     9694383,     462;
: 16 :    35355954,    1716;
: 17 :   129638355,    6435;
: 18 :   477614391,   24308,  1;
: 19 :  1767170815,   92372,  3;
: 20 :  6563767715,  352694, 11;
: 21 : 24464914983, 1351996, 41;
		

Crossrefs

Row sums give A000108.
T(834828,k) = A243752(834828,k).
T(n,0) = A243753(n,834828).
Cf. A243820.

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(x=0, 1,
         expand(`if`(y>=x-1, 0, b(x-1, y+1, [2, 3, 3, 2, 6, 3,
           8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2][t]))+
         `if`(t=20, z, 1)*`if`(y=0, 0, b(x-1, y-1, [1, 1, 4, 5, 1, 7,
           1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5][t]))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)):
    seq(T(n), n=0..30);
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 3, 3, 2, 6, 3, 8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 1, 4, 5, 1, 7, 1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5}[[t]]]]]];
    T[n_] := CoefficientList[b[2n, 0, 1], z];
    T /@ Range[0, 30] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)

A243754 Number of Dyck paths of semilength n avoiding the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1).

Original entry on oeis.org

1, 0, 0, 1, 1, 9, 1, 127, 323, 1515, 4191, 10455, 20705, 93802, 113634, 3219205, 10626023, 45980364, 139604903, 555857157, 1334821448, 7577098816, 20676558270, 61994003643, 193904367362, 800928670232, 2374027931492, 12506574770693, 29311991924792
Offset: 0

Views

Author

Alois P. Heinz, Jun 09 2014

Keywords

Examples

			a(5) = 9 because there are 9 Dyck paths of semilength 5 avoiding the consecutive step pattern UDU given by the binary expansion of 5 = 101_2: UUDDUUDDUD, UUDDUUUDDD, UUUDDDUUDD, UUUDDUDDUD, UUUDDUUDDD, UUUUDDDDUD, UUUUDDDUDD, UUUUDDUDDD, UUUUUDDDDD.
a(6) = 1: UDUDUDUDUDUD.
		

Crossrefs

Column k=0 of A243752.
Main diagonal of A243753.

A243770 Number of Dyck paths of semilength n having exactly one occurrence of the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1).

Original entry on oeis.org

1, 1, 3, 11, 16, 57, 161, 927, 1997, 5539, 25638, 68850, 275765, 995088, 2784600, 19235059, 53549250, 177389053, 711629836, 2641203240, 7517769634, 31706388438, 147201204924, 455738363552, 1614252170849, 6020919907344, 23811404216400, 79787485940824
Offset: 1

Views

Author

Alois P. Heinz, Jun 10 2014

Keywords

Examples

			a(1) = 1: (U)D.
a(2) = 1: U(UD)D.
a(3) = 3: UD(UU)DD, (UU)DDUD, (UU)DUDD.
a(4) = 11: UDUDU(UDD), UDU(UDD)UD, UDUUD(UDD), UDUU(UDD)D, U(UDD)UDUD, UUD(UDD)UD, UUDUD(UDD), UUDU(UDD)D, UU(UDD)DUD, UUUD(UDD)D, UUU(UDD)DD.
		

Crossrefs

Column k=1 of A243752.
Main diagonal of A243827.

A243771 Number of Dyck paths of semilength n having exactly two (possibly overlapping) occurrences of the consecutive step pattern given by the binary expansion of n, where 1=U=(1,1) and 0=D=(1,-1).

Original entry on oeis.org

1, 1, 2, 12, 69, 98, 180, 1056, 3967, 18357, 77685, 264563, 1245762, 1915056, 5303208, 24548040, 107835695, 375494210, 1898502240, 4942470942, 23489565822, 104559681798, 413327570240, 1426320927138, 6025235528016, 19911812844324, 87316285518504
Offset: 2

Views

Author

Alois P. Heinz, Jun 10 2014

Keywords

Examples

			a(2) = 1: (UD)[UD].
a(3) = 1: (U[U)U]DDD.
a(4) = 2: U(UDD)U[UDD], UU(UDD)[UDD].
a(5) = 12: (UD[U)DU]UDDUD, (UD[U)DU]UUDDD, (UDU)UDD[UDU]D, (UDU)[UDU]DDUD, (UDU)[UDU]UDDD, (UDU)U[UDU]DDD, UUDD(UD[U)DU]D, U(UDU)DD[UDU]D, U(UD[U)DU]DDUD, U(UD[U)DU]UDDD, U(UDU)[UDU]DDD, UU(UD[U)DU]DDD.
		

Crossrefs

Column k=2 of A243752.
Main diagonal of A243828.
Previous Showing 21-30 of 41 results. Next