cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A341343 Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = (zeta(s))^3 / (zeta(3*s))^2.

Original entry on oeis.org

1, 3, 3, 6, 3, 9, 3, 8, 6, 9, 3, 18, 3, 9, 9, 9, 3, 18, 3, 18, 9, 9, 3, 24, 6, 9, 8, 18, 3, 27, 3, 9, 9, 9, 9, 36, 3, 9, 9, 24, 3, 27, 3, 18, 18, 9, 3, 27, 6, 18, 9, 18, 3, 24, 9, 24, 9, 9, 3, 54, 3, 9, 18, 9, 9, 27, 3, 18, 9, 27, 3, 48, 3, 9, 18, 18, 9, 27, 3, 27, 9, 9, 3, 54, 9
Offset: 1

Views

Author

Werner Schulte, Feb 09 2021

Keywords

Comments

There is a family of multiplicative sequences based on trinomial numbers (A027907) and some fixed integer k >= 0. Let a(k,n), k >= 0, n > 0, be multiplicative with a(k,p^e) = Sum_{i=0..e} trinomial(k,i) for prime p and e >= 0, where trinomial(n,k) = 0 if 2*n < k. These sequences have the Dirichlet g.f.: Sum_{n>=1} a(k,n)/n^s = (zeta(s))^(k+1) / (zeta(3*s))^k. For several members of the family see A000012 (k=0), A073184 (k=1), and this sequence (k=2).

Crossrefs

Programs

  • PARI
    {T(n,k) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, k))}; \\ A027907
    a(n)={my(f=factor(n));prod(k=1,#f[,1],sum(i=0,f[k,2],T(2,i)))};
    for(j=1,75,print1(a(j),", ")) \\ Hugo Pfoertner, Feb 13 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - X^3)^2/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, Nov 20 2021

Formula

Multiplicative with a(p^e) = Sum_{i=0..e} trinomial(2,i) for prime p and e >= 0, where trinomial(n,k) = 0 if 2*n < k.
Let b(n), n > 0, be the Dirichlet inverse of a(n); b(n) is multiplicative with b(p^(3*e)) = 1 for e >= 0, and b(p^(3*e-2)) = -3*e and b(p^(3*e-1)) = 3*e for e > 0 and prime p.
Sum_{k=1..n} a(k) ~ n * (log(n)^2/2 + (3*gamma - 6*zeta'(3)/zeta(3) - 1)*log(n) + 1 - 3*gamma + 3*gamma^2 + 6*(1 - 3*gamma)*zeta'(3)/zeta(3) + 27*zeta'(3)^2 / zeta(3)^2 - 9*zeta''(3)/zeta(3) - 3*sg1) / zeta(3)^2, where gamma is the Euler-Mascheroni constant A001620, zeta(3) = A002117, zeta'(3) = -A244115, zeta''(3) = A340442 and sg1 is the first Stieltjes constant (see A082633). - Vaclav Kotesovec, Nov 20 2021

A369306 The number of cubefree divisors d of n such that n/d is also cubefree.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 1, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 0, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 2, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 0, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 2, 1, 4, 2, 12, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 19 2024

Keywords

Comments

The analogous sequence with squarefree divisors (the number of squarefree divisors d of n such that n/d is also squarefree) is abs(A007427(n)).

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := Switch[e, 1, 2, 2, 3, 3, 2, 4, 1, , 0]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> [2, 3, 2, 1, 0][min(x, 5)], factor(n)[,2]));

Formula

Multiplicative with a(p) = 2, a(p^2) = 3, a(p^3) = 2, a(p^4) = 1, and a(p^e) = 0 for e >= 5.
a(n) >= 0, with equality if and only if n is a 5-full number (A069492) larger than 1.
a(n) = 1 if and only if n is the 4th power of a squarefree number (A005117).
a(n) <= A000005(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(s)^2/zeta(3*s)^2.
Sum_{k=1..n} a(k) ~ (n/zeta(3)^2) * (log(n) + 2*gamma - 1 - 6*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).

A375503 Decimal expansion of the absolute value of zeta'(3/2), first derivative of the Riemann zeta function at s=3/2.

Original entry on oeis.org

3, 9, 3, 2, 2, 3, 9, 7, 3, 7, 4, 3, 1, 1, 0, 1, 5, 1, 0, 7, 0, 6, 3, 8, 8, 5, 7, 8, 4, 0, 6, 0, 1, 5, 2, 0, 2, 6, 9, 2, 7, 4, 3, 5, 5, 4, 8, 9, 2, 5, 7, 7, 2, 6, 1, 5, 4, 4, 6, 5, 9, 9, 4, 2, 5, 5, 4, 6, 6, 3, 6, 4, 2, 7, 7, 3, 1, 6, 7, 5, 7, 7, 8, 6, 3, 5, 9, 3, 9, 2, 8, 5, 8, 0, 8
Offset: 1

Views

Author

R. J. Mathar, Aug 18 2024

Keywords

Examples

			zeta'(3/2) = -3.93223973743110151070638857840601520269274355489257...
		

Crossrefs

Cf. A073002 (at s=2), A244115 (s=3).

Programs

  • Maple
    Zeta(1,3/2); evalf(%) ;
  • Mathematica
    RealDigits[Zeta'[3/2], 10, 120][[1]] (* Amiram Eldar, Aug 19 2024 *)

A349641 Decimal expansion of the Sum_{k>=2} 1/(k^3*log(k)).

Original entry on oeis.org

2, 3, 7, 9, 9, 6, 1, 0, 0, 1, 9, 8, 6, 2, 1, 3, 0, 1, 9, 9, 2, 8, 7, 9, 0, 7, 8, 3, 1, 3, 3, 1, 9, 0, 6, 9, 4, 9, 1, 7, 3, 5, 0, 7, 2, 6, 1, 3, 2, 4, 3, 7, 9, 4, 5, 5, 6, 9, 7, 5, 7, 7, 0, 2, 7, 8, 3, 0, 0, 8, 8, 8, 3, 6, 3, 0, 8, 0, 4, 0, 0, 4, 8, 6, 3, 9, 0, 0, 2, 8, 1, 6, 2, 0, 5, 4, 1, 8, 5
Offset: 0

Views

Author

Jianing Song, Nov 24 2021

Keywords

Examples

			Sum_{k>=2} 1/(k^3*log(k)) = 0.23799610019862130199...
		

Crossrefs

Similar sequences: A013661, A002117, A073002, A244115, A168218.

Programs

  • Mathematica
    (* following Jean-François Alcover's Mathematica program for A168218 *) digits = 110; NSum[ 1/(n^3*Log[n]), {n, 2, Infinity}, NSumTerms -> 500000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 12}}] // RealDigits[#, 10, digits] & // First
  • PARI
    intnum(x=3, [oo, log(3)], zeta(x)-1) \\ following Charles R Greathouse IV's program for A168218
    
  • PARI
    sumpos(k=2, 1/(k^3*log(k))) \\ Michel Marcus, Nov 27 2021

Formula

Equals Integral_{s=3..oo} (zeta(s) - 1) ds.

A349770 a(n) = Sum_{d|n} usigma(d) * usigma(n/d).

Original entry on oeis.org

1, 6, 8, 19, 12, 48, 16, 48, 36, 72, 24, 152, 28, 96, 96, 113, 36, 216, 40, 228, 128, 144, 48, 384, 88, 168, 136, 304, 60, 576, 64, 258, 192, 216, 192, 684, 76, 240, 224, 576, 84, 768, 88, 456, 432, 288, 96, 904, 164, 528, 288, 532, 108, 816, 288, 768, 320, 360, 120, 1824
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 29 2021

Keywords

Comments

Dirichlet convolution of A034448 with itself.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; a[n_] := Sum[usigma[d] usigma[n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 60}]

Formula

Dirichlet g.f.: ( zeta(s) * zeta(s-1) / zeta(2*s-1) )^2.
Multiplicative with a(p^e) = e * (p^e + 1) + (p+1) * (p^e - 1)/(p-1). - Amiram Eldar, Nov 29 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / zeta(3)^2 * (Pi^2 * log(n)/72 + gamma * Pi^2/36 - Pi^2/144 + zeta'(2)/6 - Pi^2 * zeta'(3)/(18*zeta(3))), where zeta(3) = A002117, zeta'(2) = -A073002, zeta'(3) = -A244115 and gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Dec 05 2021

A358336 Multiplicative sequence with a(p^e) = ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1) for prime p and e > 0.

Original entry on oeis.org

1, 3, 5, 12, 9, 15, 13, 40, 30, 27, 21, 60, 25, 39, 45, 120, 33, 90, 37, 108, 65, 63, 45, 200, 90, 75, 153, 156, 57, 135, 61, 336, 105, 99, 117, 360, 73, 111, 125, 360, 81, 195, 85, 252, 270, 135, 93, 600, 182, 270, 165, 300, 105, 459, 189, 520, 185, 171, 117, 540, 121, 183, 390, 896
Offset: 1

Views

Author

Werner Schulte, Nov 09 2022

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := ((p - 1)*(1 + e*(e + 1)/2) + e)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p, e, v=1); for (k=1, #f~, p=f[k,1]; e=f[k,2]; v *= ((p-1) * (1 + e*(e+1)/2) + e) * p^(e-1)); return (v) } \\ Rémy Sigrist, Jan 18 2023

Formula

a(n) = Sum_{k=1..n} gcd(k, n) * A005361(gcd(k, n)) for n > 0.
Equals Dirichlet convolution of A000010 and n * A005361.
Dirichlet g.f.: (zeta(s-1)^2 * zeta(2*s-2) * zeta(3*s-3)) / (zeta(s) * zeta(6*s-6)).
Equals Dirichlet convolution of A018804 and A112526.
Sum_{k=1..n} a(k) ~ (zeta(3)/(2*zeta(6))) * n^2 * (log(n) + 2*gamma - 1/2 + zeta'(2)/zeta(2) + 3*zeta'(3)/zeta(3) + 6*zeta'(6)/zeta(6)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 13 2024
Previous Showing 11-16 of 16 results.