cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A375918 Composite numbers k == 5, 7 (mod 12) such that 3^((k-1)/2) == -1 (mod k).

Original entry on oeis.org

703, 1891, 3281, 8911, 12403, 16531, 44287, 63139, 79003, 97567, 105163, 152551, 182527, 188191, 211411, 218791, 288163, 313447, 320167, 364231, 385003, 432821, 453259, 497503, 563347, 638731, 655051, 658711, 801139, 859951, 867043, 973241, 994507, 1024651, 1097227
Offset: 1

Views

Author

Jianing Song, Sep 02 2024

Keywords

Comments

Odd composite numbers k such that 3^((k-1)/2) == (3/k) = -1 (mod k), where (3/k) is the Jacobi symbol (or Kronecker symbol).

Examples

			3281 is a term because 3281 = 17*193 is composite, 3281 == 5 (mod 12), and 3^((3281-1)/2) == -1 (mod 3281).
		

Crossrefs

| b=2 | b=3 | b=5 |
-----------------------------------+-------------------+----------+---------+
(b/k)=1, b^((k-1)/2)==1 (mod k) | A006971 | A375917 | A375915 |
-----------------------------------+-------------------+----------+---------+
(b/k)=-1, b^((k-1)/2)==-1 (mod k) | A244628 U A244626 | this seq | A375916 |
-----------------------------------+-------------------+----------+---------+
b^((k-1)/2)==-(b/k) (mod k), also | A306310 | A375490 | A375816 |
(b/k)=-1, b^((k-1)/2)==1 (mod k) | | | |
-----------------------------------+-------------------+----------+---------+
Euler-Jacobi pseudoprimes | A047713 | A048950 | A375914 |
(union of first two) | | | |
-----------------------------------+-------------------+----------+---------+
Euler pseudoprimes | A006970 | A262051 | A262052 |
(union of all three) | | | |

Programs

  • PARI
    isA375918(k) = !isprime(k) && (k%12==5 || k%12==7) && Mod(3,k)^((k-1)/2) == -1

A293394 Numbers k such that (2*k-1)*(2^((k-1)/4)) == 1 (mod k).

Original entry on oeis.org

1, 17, 41, 97, 137, 193, 241, 313, 401, 409, 433, 449, 457, 521, 569, 641, 673, 761, 769, 809, 857, 929, 953, 977, 1009, 1129, 1297, 1321, 1361, 1409, 1489, 1657, 1697, 1873, 1993, 2017, 2081, 2137, 2153, 2161
Offset: 1

Views

Author

Jonas Kaiser, Nov 09 2017

Keywords

Comments

It appears that many elements of this sequence are prime. The first "pseudoprime" in this sequence is 74665.

Crossrefs

Programs

A294717 Numbers k such that 2^((k-1)/3) == 1 (mod k) and (2*k-1)*(2^((k-1)/6)) == 1 (mod k).

Original entry on oeis.org

1, 43, 109, 157, 229, 277, 283, 307, 397, 499, 643, 691, 733, 739, 811, 997, 1021, 1051, 1069, 1093, 1459, 1579, 1597, 1627, 1699, 1723, 1789, 1933, 2179, 2203, 2251, 2341, 2347, 2731, 2749, 2917, 2971, 3061, 3163, 3181, 3229, 3259, 3277, 3331, 3373, 3541, 4027
Offset: 1

Views

Author

Jonas Kaiser, Nov 07 2017

Keywords

Comments

Most of the elements of this sequence are prime. The "pseudoprimes" of these sequence are part of A244626.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 6001, 6], # == 1 || PowerMod[2, (#-1)/3, #] == 1 && Mod[-PowerMod[2, (#-1)/6, #], #] == 1&] (* Jean-François Alcover, Nov 18 2018 *)
  • PARI
    is(n)=n%6==1 && Mod(2,n)^(n\3)==1 && (2*n-1)*Mod(2,n)^(n\6)==1 \\ Charles R Greathouse IV, Nov 08 2017

A270698 Composite numbers k == 1 (mod 4) such that (1 + i)^k == 1 + i (mod k), where i = sqrt(-1).

Original entry on oeis.org

561, 1105, 1729, 1905, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 104653, 113201, 115921, 126217, 129921
Offset: 1

Views

Author

Keywords

Comments

From Jianing Song, Sep 05 2018: (Start)
Numbers in A047713 that are congruent to 1 mod 4. Most terms are congruent to 1 mod 8. For terms congruent to 5 mod 8, see A244626.
Also composite k == 1 (mod 4) such that (-4)^((k-1)/4) == 1 (mod k). Note that this is satisfied by all primes == 1 (mod 4), see A318898. (End)

Crossrefs

Subsequence of A001567 and A047713.
A244626 is a proper subsequence.

Programs

  • Mathematica
    Select[1 + 4*Range[100000], PrimeQ[#] == False && PowerMod[1 + I, #, #] == 1 + I &]
  • PARI
    forstep(n=5, 10^5, 4, if(Mod(2, n)^((n-1)/2)==kronecker(2, n) && !isprime(n), print1(n, ", "))) \\ Jianing Song, Sep 06 2018

A294912 Numbers n such that 2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*ceiling((3/4)*n)-2), and (2^((n+1)/2) + floor((1/4)*n)*2^(((n+1)/2)+1)) are all congruent to 1 (mod n).

Original entry on oeis.org

3, 11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187, 1259
Offset: 1

Views

Author

Jonas Kaiser, Nov 10 2017

Keywords

Comments

It appears that A007520 is a subsequence.
The first composite term is a(9969) = 476971 = 11*131*331. - Alois P. Heinz, Nov 10 2017
From Hilko Koning, Dec 03 2019: (Start)
The next composite terms < 1999979 are
a(17428) = 877099 = 307*2857
a(25090) = 1302451 = 571*2281
a(25518) = 1325843 = 499*2657
a(26785) = 1397419 = 67*20857
a(27549) = 1441091 = 347*4153
a(28715) = 1507963 = 971*1553
a(29117) = 1530787 = 619*2473
a(35635) = 1907851 = 11*251*691
(End)
From Hilko Koning, Dec 05 2019: (Start)
The next composite terms < 24999971 are
a(37344) = 2004403 = 307*6529
a(55773) = 3090091 = 1163*2657
a(56189) = 3116107 = 883*3529
a(91332) = 5256091 = 811*6481
a(102027) = 5919187 = 1777*3331
a(133230) = 7883731 = 811*9721
a(156407) = 9371251 = 1531*6121
a(182911) = 11081459 = 227*48817
a(189922) = 11541307 = 1699*6793
a(201043) = 12263131 = 811*15121
a(213203) = 13057787 = 467*27961
a(217484) = 13338371 = 3163*4217
a(257526) = 15976747 = 3739*4273
a(274961) = 17134043 = 1097*15619
a(299096) = 18740971 = 1531*12241
a(308928) = 19404139 = 2011*9649
a(321676) = 20261251 = 2251*9001
a(341902) = 21623659 = 1163*18593
a(348622) = 22075579 = 163*135433
a(380162) = 24214051 = 281*86171
The composite terms < 25*10^6 match the terms of A244628.
(End)
It appears that composites of the form 2k+1 such that 3*(2k+1) divides 2^k+1 are the composite terms of this sequence. - Hilko Koning, Dec 09 2019

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[{2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*Ceiling@((3/4)*n) - 2), (2^((n+1)/2) + Floor@(n/4)*2^(((n+1)/2)+1))}, Mod[#, n] == 1&];
    Select[Range[1300], okQ] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    isok(n) = (n%2) && lift((Mod(2, n)^(n-1))==1)&&lift((Mod((2*n-1), n)*Mod(2, n)^((n-1)/2)) == 1)&&lift((Mod(((4*ceil((3/4)*n)-2)), n) )== 1)&&lift((Mod(2, n)^((n+1)/2) +Mod(floor((1/4)*n),n)*Mod(2, n)^(((n+1)/2)+1 ))== 1)

Extensions

More terms from Alois P. Heinz, Nov 10 2017

A307767 The "non-residue" pseudoprimes: odd composite numbers n such that b(n)^((n-1)/2) == -1 (mod n), where base b(n) = A020649(n).

Original entry on oeis.org

3277, 3281, 29341, 49141, 80581, 88357, 104653, 121463, 196093, 314821, 320167, 458989, 476971, 489997, 491209, 721801, 800605, 838861, 873181, 877099, 973241, 1004653, 1251949, 1268551, 1302451, 1325843, 1373653, 1397419, 1441091, 1507963, 1509709, 1530787, 1590751, 1678541, 1809697
Offset: 1

Views

Author

Thomas Ordowski, Apr 27 2019

Keywords

Comments

As is well known, for an odd prime p, b(p) is the smallest quadratic non-residue b modulo p if and only if b(p) is the smallest base b such that b^((p-1)/2) == -1 (mod p). Note that b(n) is always a prime.
Conjecture: If 2^((n-1)/2) == -1 (mod n), then b(n) = 2, where b(n) as above. This is true for odd primes n; is it for odd composites n? If so, then all composite numbers n such that 2^((n-1)/2) == -1 (mod n) are in this sequence.
It seems that, for defined pseudoprimes n (similar to the odd primes p),
b(n) is the smallest base b such that b^((n-1)/2) == -1 (mod n), although this is not required by their definition.
Note: a "non-residue" pseudoprime n is a strong pseudoprime to base b(n); the Jacobi symbol (b(n)/n) = -1, where b(n) is the smallest non-residue modulo n; such a pseudoprime n is not a Proth number, so n = k*2^m + 1 with odd k > 2^m.
Problem: are there infinitely many such numbers?

Examples

			2^((3277-1)/2) == -1 (mod 3277), 3^((3281-1)/2) == -1 (mod 3281), ...
		

Crossrefs

Cf. A001262, A006970, A020649, A047713, A053760, A244626, A307798 (the "residue" pseudoprimes), A307809.

Programs

  • Mathematica
    residueQ[n_, m_] := Module[{ans = 0}, Do[If[Mod[k^2, m] == n, ans = True; Break[]], {k, 0, Floor[m/2]}]; ans]; A020649[n_] := Module[{m = 0}, While[ residueQ[m, n], m++]; m]; aQ[n_] := CompositeQ[n] && PowerMod[A020649[n], ((n - 1)/2), n] == n - 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 27 2019 *)

Extensions

More terms from Amiram Eldar, Apr 27 2019

A307798 The "residue" pseudoprimes: odd composite numbers n such that q(n)^((n-1)/2) == 1 (mod n), where base q(n) is the smallest prime quadratic residue modulo n.

Original entry on oeis.org

121, 561, 1105, 1541, 1729, 1905, 2465, 4033, 5611, 8321, 8481, 10585, 15709, 15841, 16297, 18705, 18721, 19345, 25761, 28009, 29341, 30121, 31697, 33153, 34945, 42799, 44173, 46657, 49141, 52633, 55969, 62745, 63973, 65077, 69781, 75361, 76627, 79381, 82513, 85489, 88573, 90241, 102311
Offset: 1

Views

Author

Thomas Ordowski, Apr 29 2019

Keywords

Comments

As is well known, for an odd prime p, a prime q is a quadratic residue modulo p if and only if q^((p-1)/2) == 1 (mod p). Hence the above definition of these pseudoprimes.
Such pseudoprimes n which are both "residue" and "non-residue", obviously to different bases q(n) and b(n), are particularly interesting: 29341, 49141, 1251949, 1373653, 2284453, ... These five numbers are in A244626.
Note that the absolute Euler pseudoprimes are odd composite numbers n such that b^((n-1)/2) == 1 (mod n) for every base b that is a quadratic residue modulo n and coprime to n. There are no odd composite numbers n such that b^((n-1)/2) == -1 (mod n) for every base b that is a quadratic non-residue modulo n and coprime to n. The absolute Euler-Jacobi pseudoprimes do not exist.

Examples

			3^((121-1)/2) == 1 (mod 121), 2^((561-1)/2) == 1 (mod 561), ...
		

Crossrefs

Cf. A002997, A033181, A306530, A307767 (the "non-residue" pseudoprimes).

Programs

  • Mathematica
    q[n_] := Module[{p = 2, pn = Prime[n]}, While[JacobiSymbol[p, pn] != 1, p = NextPrime[p]]; p]; aQ[n_] := CompositeQ[n] && PowerMod[q[n], (n - 1)/2, n] == 1; Select[Range[3, 110000, 2], aQ] (* Amiram Eldar, Apr 29 2019 *)

Extensions

More terms from Amiram Eldar, Apr 29 2019

A294919 Numbers n such that 2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*ceiling((1/4)*n)-2), and (2^((n+1)/2) + floor((3/4)*n)*2^(((n+1)/2)+1)) are all congruent to 1 (mod n).

Original entry on oeis.org

5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 541, 557, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 877, 941, 997, 1013, 1021, 1061, 1069, 1093, 1109, 1117, 1181, 1213
Offset: 1

Views

Author

Jonas Kaiser, Nov 10 2017

Keywords

Comments

It appears that A007521 is a subsequence.
a(118) = 3277 = 29*113 is the first nonprime term.

Crossrefs

Programs

  • Mathematica
    okQ[n_] := AllTrue[{2^(n-1), (2*n-1)*(2^((n-1)/2)), (4*Ceiling@(n/4) - 2), (2^((n+1)/2) + Floor@((3/4)*n)*2^(((n+1)/2) + 1))}, Mod[#, n] == 1&];
    Select[Range[1300], okQ] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    isok(n) = (n%2) && lift((Mod(2, n)^(n-1))==1)&&lift((Mod((2*n-1), n)*Mod(2, n)^((n-1)/2)) == 1)&&lift((Mod(((4*ceil((1/4)*n)-2)), n) )== 1)&&lift((Mod(2, n)^((n+1)/2) +Mod(floor((3/4)*n),n)*Mod(2, n)^(((n+1)/2)+1 ))== 1)

Extensions

More terms from Alois P. Heinz, Nov 10 2017

A294993 Numbers n > 1 such that all of 2^(n-1), 3^(n-1), 5^(n-1), (2*n-1)*(2^((n-1)/2)), 4*ceiling((3/4)*n)-2, and (2^((n+1)/2) + floor(n/4)*2^((n+3)/2)) are congruent to 1 (mod n).

Original entry on oeis.org

11, 19, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227, 251, 283, 307, 331, 347, 379, 419, 443, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187, 1259, 1283
Offset: 1

Views

Author

Jonas Kaiser, Nov 12 2017

Keywords

Comments

It appears that A007520 is a subsequence. Up to 10^7 there are no composites in this sequence.
The first composite is a(17465859) = 1397357851; there are probably infinitely many. - Charles R Greathouse IV, Nov 12 2017

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1300], Function[n, AllTrue[Join[Prime[Range@3]^(n - 1), {(2 n - 1) (2^((n - 1)/2)), 4 Ceiling[3 n/4] - 2, (2^((n + 1)/2) + Floor[n/4]*2^((n + 3)/2))}], Mod[#, n] == 1 &]]] (* Michael De Vlieger, Nov 15 2017 *)
  • PARI
    is(n) = n%2 && Mod(2, n)^(n-1)==1 && Mod(3, n)^(n-1)==1 && Mod(5, n)^(n-1)==1 && (2*n-1)*Mod(2, n)^((n-1)/2)== 1 && Mod(4*ceil((3/4)*n)-2, n)==1 && Mod(2, n)^((n+1)/2)+floor(n/4)*Mod(2, n)^((n+3)/2)==1

A295196 Numbers n > 1 such that 2^(n-1) and (2*n-m)*2^(((n-1)/2) - floor(log_2(n))) are congruent to 1 (mod n) for at least one of m = 3, m = 7 and m = 15.

Original entry on oeis.org

7, 23, 31, 47, 71, 79, 263, 271, 1031, 1039, 2063, 4111, 32783, 65543, 65551, 262151, 1048583, 4194319, 8388623, 67108879, 268435463, 1073741831, 1073741839, 4294967311
Offset: 1

Views

Author

Jonas Kaiser, Nov 16 2017

Keywords

Comments

This definition arises from the conjecture that pseudoprime numbers (A001567) occur only at certain distances m from the next smaller number of the form 2^n. So, if we know that a certain distance does not appear with pseudoprime numbers, we are able to calculate these numbers using Fermat's little theorem and we know that it has to be prime. To "plot" the distance of pseudoprime numbers to 2^n use m = A001567(n) - 2^floor(log_2(A001567(n))). So, the first values of m which do not have a "safe prime number distance" (values with "safe prime number distance" are those values for m which pseudoprime numbers never have) should be m = 1, 49, 81, 85, 129, 133, 273, 275, 289, 321, ....
Conjecture 1: There are no composite numbers in this sequence and perhaps infinitely many primes.
Conjecture 2: For m = 7 this definition generates A104066 and for m = 15 this definition generates A144487 (A057197).
Conjecture 3: There are (infinitely many?) m for which this definition generates nothing but (infinitely many?) primes of the form p = 2^k + m.
It appears that this sequence is a subsequence of A139035.

Crossrefs

Programs

  • Mathematica
    twoDistableQ[n_] := MemberQ[Mod[(2n - {3, 7, 15}) PowerMod[2, (n - 1)/2 - Floor@ Log2@ n, n], n], 1]; p = 3; twoDistablesList = {}; While[p < 1000000000, If[twoDistableQ@ p, AppendTo[ twoDistablesList, p]]; p = NextPrime@ p]; twoDistablesList (* Robert G. Wilson v, Nov 17 2017 *)
  • PARI
    a(n) = (n%2) && lift((Mod(2, n)^(n-1))==1) && (lift((Mod((2*n-3), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1)||lift((Mod((2*n-7), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1)||lift((Mod((2*n-15), n)*Mod(2, n)^(((n-1)/2)-floor(log(n)/log(2)))) == 1))
    
  • PARI
    is(n)=if(Mod(2,n)^(n-1)!=1, return(0)); my(m=Mod(2,n)^(n\2-logint(n,2))); ((2*n-3)*m==1 || (2*n-7)*m==1 || (2*n-15)*m==1) && n>1 \\ Charles R Greathouse IV, Nov 17 2017

Extensions

a(17)-a(24) from Charles R Greathouse IV, Nov 17 2017
Previous Showing 11-20 of 21 results. Next