A248134 Consider a number x as a concatenation of two integers, a and b: x = concat(a,b). Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
14, 19, 21, 28, 42, 47, 63, 84, 105, 126, 147, 149, 168, 189, 199, 298, 323, 497, 646, 795, 911, 969, 1292, 1499, 1822, 1999, 2087, 2733, 2998, 3089, 3248, 3379, 3644, 4555, 4997, 5411, 5466, 6178, 6377, 6496, 7288, 7995, 8199, 9161, 9267, 9744, 10822, 12356
Offset: 1
A258142 Consider the unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
6, 21, 60, 85, 90, 261, 976, 2009, 87360, 97273, 4948133, 68353213
Offset: 1
Comments
A002827 is a subset of this sequence.
No more terms below 10^8. - Amiram Eldar, Jan 12 2019
Examples
Divisors of 85 are 1, 5, 17, 85. Unitary aliquot parts are 1, 5, 17. We have: 1 + 5 + 17 = 23; 5 + 17 + 23 = 45; 17 + 23 + 45 = 85. Divisors of 2009 are 1, 7, 41, 49, 287, 2009. Unitary aliquot parts are 1, 41, 49. We have: 1 + 41 + 49 = 91; 41 + 49 + 91 = 181; 49 + 91 + 181 = 321; 91 + 181 + 321 = 593; 181 + 321 + 593 = 1095; 321 + 593 + 1095 = 2009.
Links
- Eric Weisstein's World of Mathematics, Unitary Divisor
- Eric Weisstein's World of Mathematics, Unitary Divisor Function
- Eric Weisstein's World of Mathematics, Unitary Perfect Number
- Wikipedia, Unitary divisor
Programs
-
Maple
with(numtheory):P:=proc(q,h) local a,b,k,n,t,v; v:=array(1..h); for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]); a:=[]; for k from 1 to nops(b)-1 do if gcd(b[k],n/b[k])=1 then a:=[op(a),b[k]]; fi; od; a:=sort(a); b:=nops(a); if b>1 then for k from 1 to b do v[k]:=a[k]; od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
aQ[n_] := Module[{s = Most[Select[Divisors[n], GCD[#, n/#] == 1 &]]}, If[Length[s] == 1, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[2, 10^8], aQ] (* Amiram Eldar, Jan 12 2019 *)
Extensions
a(11)-a(12) from Amiram Eldar, Jan 12 2019
A258270 Consider the unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to the reverse of themselves.
6, 75, 133, 1005, 1603, 4258, 5299, 84292, 89944, 170568, 192901, 303003, 695364, 1633303
Offset: 1
Examples
Unitary aliquot parts of 6 are 1, 2, 3. We have: 1 + 2 + 3 = 6 that is equal to its reverse. Unitary aliquot parts of 75 are 1, 3, 25. We have: 1 + 3 + 25 = 29; 3 + 25 + 29 = 57 that is the reverse of 75. Unitary aliquot parts of 84292 are 1, 4, 13, 52, 1621, 6484, 21073. We have: 1 + 4 + 13 + 52 + 1621 + 6484 + 21073 = 29248 that is the reverse of 84292.
Links
- Eric Weisstein's World of Mathematics, Unitary Divisor
- Eric Weisstein's World of Mathematics, Unitary Divisor Function
- Eric Weisstein's World of Mathematics, Unitary Perfect Number
- Wikipedia, Unitary divisor
Programs
-
Maple
with(numtheory): R:=proc(w) local x, y; x:=w; y:=0;while x>0 do y:=10*y+(x mod 10); x:=trunc(x/10); od: y; end: P:=proc(q, h) local a,b,c,k,n,t,v; v:=array(1..h); for n from 1 to q do if not isprime(n) then a:=sort([op(divisors(n))]); b:=[]; c:=ilog10(n)+1; for k from 1 to nops(a)-1 do if gcd(a[k],n/a[k])=1 then b:=[op(b),a[k]]; fi; od; if nops(b)>1 then for k from 1 to nops(b) do v[k]:=b[k]; od; t:=nops(b)+1; v[t]:=add(v[k],k=1..nops(b)); if R(v[t])=n then print(n); else while ilog10(v[t])+1<=c do t:=t+1; v[t]:=add(v[k], k=t-nops(b)..t-1); if R(v[t])=n then print(n); break; fi; od; fi; fi; fi; od; end: P(10^9,1000);
A263344 Consider the abundant aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some number of iterations reach a sum equal to themselves.
1700, 5950, 155574, 274550, 300894, 715275, 758625, 1365234, 1404172, 1542500, 1661750, 2095250, 2239750, 2673250, 2962250, 3106750, 3395750, 3829250, 4226625, 4262750, 4407250, 4700619, 5398750, 6371092, 8167635, 8560024, 12305620, 13725855, 15497625, 15586263
Offset: 1
Keywords
Examples
Aliquot parts of 1700 are 1, 2, 4, 5, 10, 17, 20, 25, 34, 50, 68, 85, 100, 170, 340, 425, 850. The abundant numbers are 20, 100, 340. Therefore: 20 + 100 + 340 = 460; 100 + 340 + 460 = 900; 340 + 460 + 900 = 1700.
Crossrefs
Programs
-
Maple
with(numtheory):P:=proc(q,h) local a,b,k,t,v; global n; v:=array(1..h); for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]); a:=[]; for k from 1 to nops(b)-1 do if sigma(b[k])>2*b[k] then a:=[op(a),b[k]]; fi; od; a:=sort(a); b:=nops(a); if b>1 then for k from 1 to b do v[k]:=a[k]; od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
-
Mathematica
seqQ[n_] := Module[{d = Select[Most[Divisors[n]], DivisorSigma[1, #] > 2 # &]}, Switch[Length[d], ?(# < 1 &), False, ?(# == 1 &), d[[1]] == n, , k = 0; While[k < n, k = Total[d]; d = Rest[AppendTo[d, k]]]; k == n]]; seq = {}; Do[ If[seqQ[n], AppendTo[seq, n]], {n, 2, 10^6}]; seq (* _Amiram Eldar, Mar 20 2019 *)
Extensions
More terms from Amiram Eldar, Mar 20 2019
A307859 Consider the non-unitary aliquot parts, in ascending order, of a composite number. Take their sum and repeat the process deleting the minimum number and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
24, 112, 189, 578, 1984, 2125, 3993, 5043, 9583, 19197, 32512, 126445, 149565, 175689, 225578, 236883, 1589949, 1862935, 1928125, 3171174, 5860526, 6149405, 11442047, 16731741, 60634549, 75062535, 134201344, 177816209, 1162143369, 4474779517, 10369035821
Offset: 1
Keywords
Examples
Divisors of 578 are 1, 2, 17, 34, 289, 578. Non-unitary aliquot parts are 17 and 34. We have: 17 + 34 = 51; 34 + 51 = 85; 51 + 85 = 136; 85 + 136 = 221; 136 + 221 = 357; 221 + 357 = 578.
Links
- Eric Weisstein's World of Mathematics, Unitary Divisor
- Wikipedia, Unitary divisor
Programs
-
Maple
with(numtheory):P:=proc(q,h) local a,b,c,k,n,t,v; v:=array(1..h); for n from 1 to q do if not isprime(n) then b:=sort([op(divisors(n))]); a:=[]; for k from 2 to nops(b)-1 do if gcd(b[k],n/b[k])>1 then a:=[op(a),b[k]]; fi; od; b:=nops(a); if b>1 then c:=0; for k from 1 to b do v[k]:=a[k]; c:=c+a[k]: od; t:=b+1; v[t]:=c; while v[t]
-
Mathematica
aQ[n_] := CompositeQ[n] && Module[{s = Select[Divisors[n], GCD[#, n/#] != 1 &]}, If[Length[s] < 2, False, While[Total[s] < n, AppendTo[s, Total[s]]; s = Rest[s]]; Total[s] == n]]; Select[Range[10^4], aQ] (* Amiram Eldar, May 07 2019 *)
Extensions
a(20)-a(31) from Amiram Eldar, May 07 2019
Comments
Examples
Links
Crossrefs
Programs
Maple