cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A244250 Triangle read by rows in which row n lists the widths in the first octant of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

For the definition of k-th width of the symmetric representation of sigma(n) see A249351.
Row n list the first n terms of the n-th row of A249351.
It appears that the leading diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
For more information see A237591, A237593.

Examples

			Triangle begins:
1;
1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 1, 0, 0;
1, 1, 1, 1, 1, 2;
1, 1, 1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2;
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

A299778 Irregular triangle read by rows: T(n,k) is the part that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned part is already associated to a previous peak or if there is no part adjacent to the k-th peak, with n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 2, 7, 0, 3, 3, 12, 0, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 28, 0, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 8, 0, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 39, 0, 0, 0, 0, 10, 0, 0, 0, 10, 42, 0, 0, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 60, 0, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1

Views

Author

Omar E. Pol, Apr 03 2018

Keywords

Comments

For the definition of "part" of the symmetric representation of sigma see A237270.
For more information about the mentioned Dyck paths see A237593.

Examples

			Triangle begins (rows 1..28):
   1;
   3;
   2,  2;
   7,  0;
   3,  3;
  12,  0,  0;
   4,  0,  4;
  15,  0,  0;
   5,  3,  5;
   9,  0,  9,  0;
   6,  0,  0,  6;
  28,  0,  0,  0;
   7,  0,  0,  7;
  12,  0, 12,  0;
   8,  8,  0,  0,  8;
  31,  0,  0,  0,  0;
   9,  0,  0,  0,  9;
  39,  0,  0,  0,  0;
  10,  0,  0,  0, 10;
  42,  0,  0,  0,  0;
  11,  5,  0,  5,  0, 11;
  18,  0,  0,  0, 18,  0;
  12,  0,  0,  0,  0, 12;
  60,  0,  0,  0,  0,  0;
  13,  0,  5,  0,  0, 13;
  21,  0,  0,  0  21,  0;
  14,  6,  0,  6,  0, 14;
  56,  0,  0,  0,  0,  0,  0;
  ...
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.              0 _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _ 0
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_ 0
.    0 _ _ _| |    0 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |    0 _ _| |   12 _ _ _ _          |_  |         | |
.     | |     |  _ _|  0 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |    0 _|   |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|  0 _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|0    | |     | |
.   | |     |_|_ _     0  |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |  0 _|    _ _|0    | |
.   |_|_ _ _     0  |_   4        |_ _ _ _ _|  _|     |    _ _ _| |
.  8      | |_ _   0  |                     15|      _|   |  _ _ _|
.         |_    |     |_ _ _ _ _ _            |  _ _|  0 _| |      0
.        8  |_  |_    |_ _ _ _ _ _|_ _ _ _ _ _| |    0 _|  _|
.          0  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|  0
.            0    |                             28|  _ _|  0
.                 |_ _ _ _ _ _ _ _                | |    0
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains A237590(16) = 27 parts.
For the construction of the spiral see A239660.
		

Crossrefs

Row sums give A000203.
Row n has length A003056(n).
Column k starts in row A000217(k).
Nonzero terms give A237270.
The number of nonzero terms in row n is A237271(n).
Column 1 is A241838.
The triangle with n rows contain A237590(n) nonzero terms.
Cf. A296508 (analog for subparts).

A320521 a(n) is the smallest even number k such that the symmetric representation of sigma(k) has n parts.

Original entry on oeis.org

2, 10, 50, 230, 1150, 5050, 22310, 106030, 510050, 2065450, 10236350
Offset: 1

Views

Author

Omar E. Pol, Oct 14 2018

Keywords

Comments

It appears that a(n) = 2 * q where q is odd and that the symmetric representation of sigma(a(n)/2) has the same number of parts as that for a(n). Number a(12) > 15000000. - Hartmut F. W. Hoft, Sep 22 2021

Examples

			a(1) = 2 because the second row of A237593 is [2, 2], and the first row of the same triangle is [1, 1], therefore between both symmetric Dyck paths there is only one part: [3], equaling the sum of the divisors of 2: 1 + 2 = 3. See below:
.
.     _ _ 3
.    |_  |
.      |_|
.
.
a(2) = 10 because the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6], and the 9th row of the same triangle is [5, 2, 2, 2, 2, 5], therefore between both symmetric Dyck paths there are two parts: [9, 9]. Also there are no even numbers k < 10 whose symmetric representation of sigma(k) has two parts. Note that the sum of these parts is 9 + 9 = 18, equaling the sum of the divisors of 10: 1 + 2 + 5 + 10 = 18. See below:
.
.     _ _ _ _ _ _ 9
.    |_ _ _ _ _  |
.              | |_
.              |_ _|_
.                  | |_ _ 9
.                  |_ _  |
.                      | |
.                      | |
.                      | |
.                      | |
.                      |_|
.
a(3) = 50 because the 50th row of A237593 is [26, 9, 4, 3, 3, 1, 2, 1, 1, 1, 1, 2, 1, 3, 3, 4, 9, 26], and the 49th row of the same triangle is [25, 9, 5, 3, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 3, 5, 9, 25], therefore between both symmetric Dyck paths there are three parts: [39, 15, 39]. Also there are no even numbers k < 50 whose symmetric representation of sigma(k) has three parts. Note that the sum of these parts is 39 + 15 + 39 = 93, equaling the sum of the divisors of 50: 1 + 2 + 5 + 10 + 25 + 50 = 93. (The diagram of the symmetric representation of sigma(50) = 93 is too large to include.)
		

Crossrefs

Row 1 of A320537.
Cf. A237270 (the parts), A237271 (number of parts), A174973 (one part), A239929 (two parts), A279102 (three parts), A280107 (four parts), A320066 (five parts), A320511 (six parts).

Programs

  • Mathematica
    (* support functions are defined in A341969, A341970 & A341971 *)
    a320521[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=2, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list]
    a320521[15000000,11] (* Hartmut F. W. Hoft, Sep 22 2021 *)

Extensions

a(6)-a(11) from Hartmut F. W. Hoft, Sep 22 2021

A279667 Number of subparts (also number of odd divisors) of the smallest number k such that the symmetric representation of sigma(k) has n layers.

Original entry on oeis.org

1, 2, 4, 4, 6, 8, 8, 12, 12, 12, 16, 24, 24, 18, 32, 32, 24, 36, 24, 36, 32, 48, 36, 32, 48, 48, 48
Offset: 1

Views

Author

Omar E. Pol, Dec 16 2016

Keywords

Comments

In other words: number of subparts (also number of odd divisors) of the smallest number k such that the symmetric representation of sigma(k) has at least a part of width n.
Note that the number of subparts in the symmetric representation of sigma(n) equals A001227(n), the number of odd divisors of n.
For more information about the subparts and the layers see A279387.

Examples

			For n = 5 we have that 360 is the smallest number k whose symmetric representation of sigma(k) has parts of width 5. The structure has six subparts: [719, 237, 139, 71, 2, 2]. On the other hand, 360 has six odd divisors: {1, 3, 5, 9, 15, 45}, so a(5) = 6.
		

Crossrefs

Formula

a(n) = A001227(A250070(n)).

A348142 Square array read by upward antidiagonals in which T(w,p) is the smallest number k whose symmetric representation of sigma(k) consists of p parts with maximum width w occurring in everyone of its p parts.

Original entry on oeis.org

1, 6, 3, 60, 78, 9, 120, 7620, 1014, 21, 360, 28920, 967740, 12246, 81, 840, 261720, 6969720, 116136420, 171366, 147, 3360, 1422120
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 04 2021

Keywords

Comments

It appears that the first row is A318843 and that the first column is A250070.
Columns 1 and 2 both are identical with those of the table in A348171 and row 1 is identical with that of A348171.
In the remainder of the 7th antidiagonal a(24..26) > 120*10^6, a(27) = 1922622, and a(28) = 903.

Examples

			The 10x8 section of the table T(w,p) with dashes indicating values greater than 120*10^6; rows w denote the common maximum width in all parts and columns p the number of parts in the symmetric representation of sigma(T(w,p)).
w\p | 1     2         3        4         5        6        7        8  ...
--------------------------------------------------------------------------
  1 | 1     3         9        21        81       147     729      903
  2 | 6     78        1014     12246     171366   1922622 28960854  -
  3 | 60    7620      967740   116136420   -         -       -
  4 | 120   28920     6969720    -
  5 | 360   261720      -
  6 | 840   1422120     -
  7 | 3360  22622880    -
  8 | 2520  12728520    -
  9 | 5040  50858640    -
  10| 10080    -
   ...
The symmetric representation of sigma for T(2,2) = 78 consists of the two parts (84, 84) of maximum widths (2, 2), and that of T(2,3) = 1014 consists of the three parts (1020, 156, 1020) of maximum widths (2, 2, 2).
		

Crossrefs

Programs

  • Mathematica
    (* function a341969 is defined in A341969 *)
    a348142[n_, {w_, p_}] := Module[{list=Table[0, {i, w}, {j, p}], k, s, c, u}, Monitor[For[k=1, k<=n, k++, s=Map[Max, Select[SplitBy[a341969[k], #!=0&], #[[1]]!=0&]]; c=Length[s]; u=Union[s]; If[Length[u]==1&&u[[1]]<=w&&c<=p, If[list[[u[[1]], c]]==0, list[[u[[1]], c]]=k]]], list]; list]
    table=a348142[120000000, {10, 10}] (* 10x10 table; very long computation time *)
    p[n_] := n-row[n-1](row[n-1]+1)/2
    w[n_] := row[n-1]-p[n]+2
    Map[table[[w[#], p[#]]]&,  Range[23]] (* sequence data *)

Formula

a((w+p-2)(w+p-1)/2 + p) = T(w,p), for all w, p >= 1.
T(w(n),p(n)) = a(n), for all n >= 1, where p(n) = n - r(n-1) * (r(n-1) + 1)/2, w(n) = r(n-1) - p(n) + 2, and r(n) = floor((sqrt(8*n+1) - 1)/2).

A360022 Triangle read by rows: T(n,k) is the sum of the widths of the k-th diagonals of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 1, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 0, 0, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Jan 22 2023

Keywords

Comments

The main diagonal of the diagram called "symmetric representation of sigma(n)" is its axis of symmetry. In this case it is also the first diagonal of the diagram. The second diagonals are the two diagonals that are adjacent to the main diagonal. The third diagonals are the two diagonals that are adjacent to the second diagonals. And so on.
If and only if n is a power of 2 (A000079) then row n lists the first n terms of A040000 (the same sequence as the right border of the triangle).
If and only if n is an odd prime (A065091) then row n lists (n - 1)/2 zeros together with 1 + (n - 1)/2 2's.
If and only if n is an even perfect number (Cf. A000396) then row n lists n 2's (the first n terms of A007395).
For further information about the mentioned "widths" see A249351.

Examples

			Triangle begins (rows: 1..16):
  1;
  1, 2;
  0, 2, 2;
  1, 2, 2, 2;
  0, 0, 2, 2, 2;
  2, 2, 2, 2, 2, 2;
  0, 0, 0, 2, 2, 2, 2;
  1, 2, 2, 2, 2, 2, 2, 2;
  1, 2, 0, 0, 2, 2, 2, 2, 2;
  0, 2, 2, 2, 2, 2, 2, 2, 2, 2;
  0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2;
  2, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2;
  0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2;
  0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
  2, 2, 2, 2, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2;
  1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2;
  ...
		

Crossrefs

Row sums give A000203.
Column 1 gives A067742.
Right border gives A040000.

Formula

T(n,1) = A067742(n) = A249351(n,n).
T(n,k) = 2*A249351(n,n+k-1), if 1 < k <= n.
Previous Showing 21-26 of 26 results.