cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A380605 Expansion of e.g.f. exp(2*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 2, 16, 260, 6544, 224672, 9797824, 518778752, 32332764160, 2319086302208, 188178044545024, 17043816700333568, 1704575787500099584, 186577340672207974400, 22185432394552519868416, 2847773562263558405439488, 392481896442656581445287936, 57805399208817471918851883008
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, 2^(n-k)*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A380515.
a(n) = 3 * n! * Sum_{k=0..n-1} 2^(n-k) * binomial(3*n+k,k)/((3*n+k) * (n-k-1)!) for n > 0.

A380606 Expansion of e.g.f. exp(3*x*G(x)^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 3, 27, 459, 11817, 411183, 18090459, 963856071, 60351513777, 4344290172891, 353515902334299, 32093341598006307, 3215888732193019353, 352572962113533923271, 41981774097966848444763, 5395346708265250105968927, 744369113570455426540767201, 109733083289828610273889269939
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 3*n!*sum(k=0, n-1, 3^(n-k)*binomial(3*n+k, k)/((3*n+k)*(n-k-1)!)));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A380515.
a(n) = 3 * n! * Sum_{k=0..n-1} 3^(n-k) * binomial(3*n+k,k)/((3*n+k) * (n-k-1)!) for n > 0.

A251660 Table of coefficients in functions R(n,x) defined by R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1) where G(n,x) = 1 + x*G(n,x)^n, for rows n>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 1, 1, 1, 4, 21, 56, 1, 1, 1, 5, 40, 261, 592, 1, 1, 1, 6, 65, 712, 4833, 8512, 1, 1, 1, 7, 96, 1505, 18784, 120303, 155584, 1, 1, 1, 8, 133, 2736, 51505, 663424, 3778029, 3456896, 1, 1, 1, 9, 176, 4501, 115056, 2354725, 29480896, 143531433, 90501632, 1
Offset: 1

Views

Author

Paul D. Hanna, Dec 21 2014

Keywords

Examples

			This table begins:
n=1: [1, 1,  1,   1,     1,       1,        1,           1, ...];
n=2: [1, 1,  2,   8,    56,     592,     8512,      155584, ...];
n=3: [1, 1,  3,  21,   261,    4833,   120303,     3778029, ...];
n=4: [1, 1,  4,  40,   712,   18784,   663424,    29480896, ...];
n=5: [1, 1,  5,  65,  1505,   51505,  2354725,   135258625, ...];
n=6: [1, 1,  6,  96,  2736,  115056,  6455376,   454666176, ...];
n=7: [1, 1,  7, 133,  4501,  224497, 14926387,  1245099709, ...];
n=8: [1, 1,  8, 176,  6896,  397888, 30584128,  2948178304, ...];
n=9: [1, 1,  9, 225, 10017,  656289, 57255849,  6262226721, ...];
n=10:[1, 1, 10, 280, 13960, 1023760, 99935200, 12226859200, ...]; ...
where e.g.f. of row n equals: exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1).
Related table of coefficients in G(n,x) = 1 + x*G(n,x)^n  begins:
n=1: [1, 1,  1,   1,    1,     1,      1,        1, ...];
n=2: [1, 1,  2,   5,   14,    42,    132,      429, ...];
n=3: [1, 1,  3,  12,   55,   273,   1428,     7752, ...];
n=4: [1, 1,  4,  22,  140,   969,   7084,    53820, ...];
n=5: [1, 1,  5,  35,  285,  2530,  23751,   231880, ...];
n=6: [1, 1,  6,  51,  506,  5481,  62832,   749398, ...];
n=7: [1, 1,  7,  70,  819, 10472, 141778 , 1997688, ...];
n=8: [1, 1,  8,  92, 1240, 18278, 285384,  4638348, ...];
n=9: [1, 1,  9, 117, 1785, 29799, 527085,  9706503, ...];
n=10:[1, 1, 10, 145, 2470, 46060, 910252, 18730855, ...]; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(G=1); for(i=0, k, G=1+x*G^n +x*O(x^k)); k!*polcoeff(exp(n*x*G^(n-1))/G^(n-1), k)}
    /* Print as a rectangular table */
    for(n=1, 10, for(k=0,10, print1(T(n,k), ", "));print(""))
    /* Print as a flattened table */
    for(n=0, 12, for(k=0,n, print1(T(n-k+1,k), ", "));)
    /* Print the Related table of functions G(n,x) = 1 + x*G(n,x)^n */
    {R(n,k)=local(G=1); for(i=0, k, G=1+x*G^n +x*O(x^k)); polcoeff(G, k)}
    for(n=1, 10, for(k=0,10, print1(R(n,k), ", "));print(""))
    
  • PARI
    /* Binomial sum formula for term T(n,k) */
    {T(n,k) = if(k<=1,1,sum(j=0,k, n^j * k!/j! * binomial(n*(k-1)-j, k-j) * (j-1)/(k-1)))}
    for(n=1, 10, for(k=0, 10, print1(T(n, k), ", ")); print(""))

Formula

E.g.f. of row n, R(n,x), for n>=1, satisfies:
(1) [x^k/k!] R(n,x)^(k+1) = n^(k-1) * (n+k) * (k+1)^(k-2) for k>=0.
(2) R(n,x) = exp( n*x*G(n,x)^(n-1) ) / G(n,x)^(n-1), where G(n,x) = 1 + x*G(n,x)^n.
(3) R'(n,x)/R(n,x) = G(n,x)^(n-1), where G(n,x) = 1 + x*G(n,x)^n.
T(n,k) = Sum_{j=0..k} n^j * k!/j! * binomial(n*(k-1)-j, k-j) * (j-1)/(k-1) for k>1, n>=1.
Previous Showing 11-13 of 13 results.