A331776
Number of regions in a "frame" of size n X n (see Comments for definition).
Original entry on oeis.org
4, 56, 208, 496, 1016, 1784, 2984, 4656, 6968, 9944, 13976, 18928, 25360, 33128, 42488, 53600, 67232, 82904, 101744, 123232, 147896, 175784, 208296, 244416, 285600, 331352, 382608, 439008, 502776, 571912, 649480, 734176, 826880, 927416, 1037288, 1155152, 1284992
Offset: 1
- Jinyuan Wang, Table of n, a(n) for n = 1..1000
- Scott R. Shannon, Colored illustration for a(1) = 4
- Scott R. Shannon, Colored illustration for a(2) = 56
- Scott R. Shannon, Colored illustration for a(3) = 208
- Scott R. Shannon, Colored illustration for a(4) = 496
- Scott R. Shannon, Colored illustration for a(5) = 1016
- Scott R. Shannon, Colored illustration for a(6) = 1784
- Scott R. Shannon, Colored illustration for a(7) = 2984
- Scott R. Shannon, Colored illustration for a(8) = 4656
- Scott R. Shannon, Colored illustration for a(8) = 4656 (Another version)
- Zach Shannon, Illustration for a(8) = 4656 used as a frame for the OEIS logo
- Zach Shannon, Illustration for a(8) = 4656 used as a frame for the OEIS logo (detail)
- N. J. A. Sloane, Illustration for a(3) = 208
The analogous sequence for an n X n block of squares (if the center block is not removed) is
A331452.
-
# First define z(n) = A115004
z := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
A331776 := n -> if n=1 then 4 else 4*z(n)+16*n^2 - 20*n; fi;
[seq(A331776(n),n=1..40)]; # N. J. A. Sloane, Mar 09 2020
-
a(n) = 4*sum(i=1, n, sum(j=1, n, if(gcd(i, j)==1, (n+1-i)*(n+1-j), 0))) + 16*n^2 - 20*n + 4*(n==1); \\ Jinyuan Wang, Aug 07 2021
-
from sympy import totient
def A331776(n): return 4 if n == 1 else 20*n*(n-1) + 4*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 16 2021
A345459
Number of polygons formed when connecting all 4n points on the perimeter of an n X n square by infinite lines.
Original entry on oeis.org
0, 4, 80, 568, 2024, 6052, 12144, 26976, 45024, 76724, 116840, 191128, 245976, 388452, 501888, 661476, 870168, 1199724, 1402096, 1911384, 2188320, 2739280, 3371264, 4224288, 4617224, 5801372, 6780568
Offset: 0
a(2) = 80. Connecting the 8 perimeter points results in the creation of forty-eight 3-gons and eight 4-gons inside the square while creating twenty-four 3-gons outside the square, giving eighty polygons in total. See the linked images.
- Scott R. Shannon, Image for n = 2. In this and other images the square's points are highlighted as white dots while the outer open regions, which are not counted, are darkened. The key for the edge-number coloring is shown at the top-left of the image.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
A355799
Number of vertices formed in a square by straight line segments when connecting the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on the edge on the opposite side of the square.
Original entry on oeis.org
4, 9, 25, 93, 277, 597, 1405, 2421, 4357, 6661, 11261, 14593, 23625, 30121, 41453, 54477, 75985, 87677, 122433, 139461, 177965, 216017, 275733, 298805, 383497, 439909, 522473, 588597, 729501, 763149, 963573, 1045701, 1204481, 1361789, 1546309, 1657125, 2009113, 2166617, 2418733, 2602789
Offset: 1
A355800
Number of edges formed in a square by straight line segments when connecting the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on the edge on the opposite side of the square.
Original entry on oeis.org
4, 12, 48, 196, 592, 1308, 2992, 5236, 9296, 14332, 23704, 31432, 49592, 64208, 87712, 115524, 158776, 186660, 255464, 295532, 374200, 455064, 574024, 632836, 800568, 923764, 1092672, 1238412, 1515912, 1613148, 2001200, 2191124, 2516016, 2847668, 3223968, 3485484, 4167304, 4523992, 5042336
Offset: 1
A355801
Irregular table read by rows: T(n,k) is the number of k-sided polygons, for k>=3, in a square when straight line segments connect the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on the edge on the opposite side of the square.
Original entry on oeis.org
0, 1, 0, 4, 12, 12, 56, 32, 16, 156, 124, 24, 8, 0, 4, 384, 228, 72, 28, 716, 648, 144, 68, 8, 4, 1312, 1144, 240, 112, 8, 2244, 1912, 528, 256, 3528, 3072, 696, 360, 16, 5012, 5536, 1296, 524, 48, 28, 7696, 6596, 1960, 572, 16, 10340, 11448, 2968, 1028, 160, 24, 14520, 14428, 3872, 1156, 104, 8
Offset: 1
The table begins:
0, 1;
0, 4;
12, 12;
56, 32, 16;
156, 124, 24, 8, 0, 4;
384, 228, 72, 28;
716, 648, 144, 68, 8, 4;
1312, 1144, 240, 112, 8;
2244, 1912, 528, 256;
3528, 3072, 696, 360, 16;
5012, 5536, 1296, 524, 48, 28;
7696, 6596, 1960, 572, 16;
10340, 11448, 2968, 1028, 160, 24;
14520, 14428, 3872, 1156, 104, 8;
19588, 19156, 5296, 2052, 160, 8;
25392, 26112, 7160, 2152, 208, 24;
31820, 37244, 9936, 3240, 488, 64;
.
.
A358407
Number of regions formed in a square by straight line segments when connecting the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on each of the two adjacent edges of the square.
Original entry on oeis.org
1, 5, 37, 173, 553, 1365, 2909, 5513, 9577, 15485, 24157, 35021, 51201, 71013, 95621, 126277, 167213, 211737, 272025, 335681, 413677, 505445, 618557, 729485, 878017, 1034697, 1215185, 1409273, 1654785, 1875265, 2192281, 2486797, 2836317, 3216833, 3633709, 4034313, 4599789, 5124841
Offset: 1
A333519
Number of regions in a polygon whose boundary consists of n+2 equally spaced points around a semicircle and n+2 equally spaced points along the diameter (a total of 2n+2 points). See Comments for precise definition.
Original entry on oeis.org
0, 2, 13, 48, 141, 312, 652, 1160, 1978, 3106, 4775, 6826, 9803, 13328, 17904, 23536, 30652, 38640, 48945, 60300, 74248, 89892, 108768, 128990, 153826, 180206, 211483, 245000, 284375, 325140, 374450, 425312, 484168, 545938, 616981, 690132, 775077, 862220
Offset: 0
A335350
a(n) is the number of regions formed in a square by dividing each of its sides into n equal parts giving a total of 4*n nodes and drawing straight line segments from node k to node (k+n+1) mod 4*n, 0 <= k < 4*n.
Original entry on oeis.org
4, 25, 37, 81, 109, 169, 205, 289, 341, 441, 485, 625, 701, 825, 913, 1089, 1189, 1369, 1461, 1661, 1805, 2025, 2141, 2389, 2549, 2809, 2929, 3249, 3405, 3721, 3901, 4205, 4421, 4753, 4913, 5329, 5549, 5913, 6105, 6561, 6781, 7225, 7453, 7885, 8189, 8649
Offset: 1
A335351
a(n) is the number of edges formed in a square by dividing each of its sides into n equal parts giving a total of 4*n nodes and drawing straight line segments from node k to node (k+n+1) mod 4*n, 0 <= k < 4*n.
Original entry on oeis.org
8, 48, 64, 160, 208, 336, 392, 576, 664, 880, 936, 1248, 1376, 1632, 1784, 2176, 2344, 2736, 2872, 3304, 3568, 4048, 4224, 4768, 5048, 5616, 5776, 6496, 6744, 7440, 7736, 8392, 8776, 9496, 9712, 10656, 11024, 11808, 12088, 13120, 13464, 14448, 14800, 15736
Offset: 1
A335352
a(n) is the number of vertices formed in a square by dividing each of its sides into n equal parts giving a total of 4*n nodes and drawing straight line segments from node k to node (k+n+1) mod 4*n, 0 <= k < 4*n.
Original entry on oeis.org
5, 24, 28, 80, 100, 168, 188, 288, 324, 440, 452, 624, 676, 808, 872, 1088, 1156, 1368, 1412, 1644, 1764, 2024, 2084, 2380, 2500, 2808, 2848, 3248, 3340, 3720, 3836, 4188, 4356, 4744, 4800, 5328, 5476, 5896, 5984, 6560, 6684, 7224, 7348, 7852, 8100, 8648
Offset: 1
Comments