cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A255403 Product_{k=1..n} (k^k)!.

Original entry on oeis.org

1, 24, 261332866810040451858432000000
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 22 2015

Keywords

Comments

The next term (a(4)) has 537 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k^k)!, {k, 1, n}], {n, 1, 4}]

A272096 a(n) = Product_{k=0..n} (k*n)!.

Original entry on oeis.org

1, 1, 48, 1567641600, 9698137182219213471744000000, 21488900044302744250061179567064173417691432878080000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2016

Keywords

Comments

The next term has 126 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(k*n)!, {k, 0, n}], {n, 0, 6}]

Formula

a(n) ~ A^n * n^(1/4 + 13*n/12 + n^2 + n^3) * (2*Pi)^(1/4 + n/2) / exp(n*(2 + 2*n + 3*n^2)/4), where A = A074962 is the Glaisher-Kinkelin constant.

A371499 Decimal expansion of Sum_{k>=0} 1/(k^2)!.

Original entry on oeis.org

2, 0, 4, 1, 6, 6, 9, 4, 2, 2, 3, 9, 8, 6, 3, 6, 8, 6, 0, 0, 2, 9, 0, 5, 5, 8, 6, 0, 7, 2, 1, 0, 6, 6, 2, 9, 1, 1, 7, 5, 3, 7, 9, 7, 4, 8, 0, 0, 7, 6, 6, 3, 5, 1, 3, 3, 1, 5, 4, 8, 9, 1, 4, 5, 6, 7, 4, 8, 4, 6, 8, 0, 2, 0, 0, 4, 7, 6, 1, 8, 9, 8, 3, 9, 9, 4
Offset: 0

Views

Author

Clark Kimberling, Mar 30 2024

Keywords

Examples

			2.04166942239863686002905586072...
		

Crossrefs

Programs

  • Mathematica
    s[x_] := s[x] = Sum[x^n/((n^2)!), {n, 0, Infinity}]
    First[RealDigits[N[s[1], 100]]]
  • PARI
    suminf(k=0,1/(k^2)!) \\ Hugo Pfoertner, Mar 30 2024

Formula

(This constant) - (constant in A371498) = 2.00000551146384...

A371645 a(n) = Product_{k=0..n} (2*k^2)!.

Original entry on oeis.org

1, 2, 80640, 516287415629905920000, 135851139773030831011345707357554182190215987200000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 31 2024

Keywords

Comments

The next term has 121 digits.

Crossrefs

Cf. A255322.

Programs

  • Mathematica
    Table[Product[(2*k^2)!, {k, 0, n}], {n, 0, 6}]

Formula

a(n) ~ c * 2^(2*n^3/3 + n^2 + 4*n/3) * Pi^(n/2) * n^(4*n^3/3 + 2*n^2 + 5*n/3 + 1/2) / exp(10*n^3/9 + n^2 + n), where c = 3.03114159524498232897099596239043047625469924617878376047699145874714076...

A324442 a(n) = Product_{i=1..n, j=1..n} (i^2 + j).

Original entry on oeis.org

1, 2, 180, 6652800, 402265543680000, 109211487076824381849600000, 295382703175843424854047228769075200000000, 15385012566245626089929288743828190926813939944652800000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^2+j, i=1..n), j=1..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[i^2 + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
    Table[Product[Pochhammer[1 + i^2, n], {i, 1, n}], {n, 1, 10}]

Formula

From Vaclav Kotesovec, Dec 27 2023: (Start)
a(n) ~ c * n^(2*n^2 + n/2 - 1/4) / exp(2*n^2 - 2*Pi*n^(3/2)/3 - Pi*sqrt(n)/2), where c = 0.31906...
For n>1, a(n) = a(n-1) * Gamma(n - i*sqrt(n)) * Gamma(n + i*sqrt(n)) * Gamma(n^2 + n + 1) * sinh(Pi*sqrt(n)) / (Pi * n^(5/2) * Gamma(n^2)), where i is the imaginary unit. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A370483 a(n) = Product_{k=0..n} binomial(n^2 + k^2, k^2).

Original entry on oeis.org

1, 2, 350, 347633000, 101143578356902991250, 422044560230008480282938965899488406272, 1208807563912714402070105775158111317516306396248661153276031151000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 31 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Binomial[n^2 + k^2, n^2], {k, 0, n}], {n, 0, 8}]
    Table[Product[Binomial[n^2 + k^2, k^2], {k, 0, n}], {n, 0, 8}]

Formula

a(n) = Product_{k=0..n} binomial(n^2 + k^2, n^2).
a(n) = A371643(n) / ((n^2)!^(n+1) * A255322(n)).
a(n) ~ 2^(4*n^3/3 + n^2 + n/6 + 1/4) * exp((Pi-4)*n^3/3 + Pi*n/4) / (A255504 * n^(n + 1/2) * Pi^(n/2)).
Previous Showing 11-16 of 16 results.