cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A339533 Numbers b > 1 such that the smallest four primes, i.e., 2, 3, 5 and 7 are base-b Wieferich primes.

Original entry on oeis.org

557, 901, 1549, 2449, 4049, 5293, 5849, 6193, 7057, 7957, 8801, 9701, 12349, 13249, 14093, 14993, 15857, 16201, 16757, 18001, 19601, 20501, 21149, 21493, 22049, 23257, 23293, 24893, 25057, 25793, 26657, 27557, 28549, 30349, 31949, 32849, 33301, 34201, 35801
Offset: 1

Views

Author

Felix Fröhlich, Dec 08 2020

Keywords

Crossrefs

Cf. A256236. Row 1 of A319061.
Cf. smallest k primes are base-b Wieferich primes: A339531 (k=2), A339532 (k=3), A339534 (k=5), A339535 (k=6), A339536 (k=7), A339537 (k=8).

Programs

  • Mathematica
    Select[Range[2, 36000], Function[b, AllTrue[{2, 3, 5, 7}, PowerMod[b, (# - 1), #^2] == 1 &]]] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    is(n) = forprime(p=1, 7, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1

A339534 Numbers b > 1 such that the smallest five primes, i.e., 2, 3, 5, 7 and 11 are base-b Wieferich primes.

Original entry on oeis.org

19601, 22049, 48149, 52057, 67357, 84457, 85193, 93493, 104057, 113257, 115757, 132857, 160849, 171793, 186101, 198449, 206749, 209249, 224549, 228457, 235493, 261593, 265501, 280801, 297901, 317501, 326701, 329201, 329849, 346301, 359857, 374293, 374849
Offset: 1

Views

Author

Felix Fröhlich, Dec 08 2020

Keywords

Crossrefs

Cf. A256236. Row 1 of A319062.
Cf. smallest k primes are base-b Wieferich primes: A339531 (k=2), A339532 (k=3), A339533 (k=4), A339535 (k=6), A339536 (k=7), A339537 (k=8).

Programs

  • Mathematica
    Select[Range[2, 375000], Function[b, AllTrue[{2, 3, 5, 7, 11}, PowerMod[b, (# - 1), #^2] == 1 &]]] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    is(n) = forprime(p=1, 11, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1

A339535 Numbers b > 1 such that the smallest six primes, i.e., 2, 3, 5, 7, 11 and 13 are base-b Wieferich primes.

Original entry on oeis.org

132857, 171793, 261593, 618301, 700993, 997757, 1211201, 1365857, 1388593, 1542293, 1557593, 1681649, 1692557, 1906001, 2086793, 2124757, 2245357, 2293757, 2341349, 2443501, 2822957, 3025457, 3036401, 3435193, 3554657, 3569257, 3814649, 4028093, 4048901
Offset: 1

Views

Author

Felix Fröhlich, Dec 08 2020

Keywords

Crossrefs

Cf. A256236. Row 1 of A319063.
Cf. smallest k primes are base-b Wieferich primes: A339531 (k=2), A339532 (k=3), A339533 (k=4), A339534 (k=5), A339536 (k=7), A339537 (k=8).

Programs

  • Mathematica
    Select[Range[2, 4100000], Function[b, AllTrue[{2, 3, 5, 7, 11, 13}, PowerMod[b, (# - 1), #^2] == 1 &]]] (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    is(n) = forprime(p=1, 13, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1

A339536 Numbers b > 1 such that the smallest seven primes, i.e., 2, 3, 5, 7, 11, 13 and 17 are base-b Wieferich primes.

Original entry on oeis.org

4486949, 4651993, 4941649, 5571593, 11903257, 19397501, 19841257, 19942001, 20610901, 21530501, 25793893, 42969601, 44404093, 46336949, 51509701, 52786493, 53740457, 54561401, 56120257, 56904857, 63789749, 64028593, 65497301, 65666449, 68441957, 72582101
Offset: 1

Views

Author

Felix Fröhlich, Dec 08 2020

Keywords

Crossrefs

Cf. A256236. Row 1 of A319064.
Cf. smallest k primes are base-b Wieferich primes: A339531 (k=2), A339532 (k=3), A339533 (k=4), A339534 (k=5), A339535 (k=6), A339537 (k=8).

Programs

  • PARI
    is(n) = forprime(p=1, 17, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1

A339537 Numbers b > 1 such that the smallest eight primes, i.e., 2, 3, 5, 7, 11, 13, 17 and 19 are base-b Wieferich primes.

Original entry on oeis.org

126664001, 133487693, 141313157, 236176001, 242883757, 356977349, 358254649, 383691493
Offset: 1

Views

Author

Felix Fröhlich, Dec 08 2020

Keywords

Crossrefs

Cf. A256236. Row 1 of A319065.
Cf. smallest k primes are base-b Wieferich primes: A339531 (k=2), A339532 (k=3), A339533 (k=4), A339534 (k=5), A339535 (k=6), A339536 (k=7).

Programs

  • PARI
    is(n) = forprime(p=1, 19, if(Mod(n, p^2)^(p-1)!=1, return(0))); 1

A258787 Triangle read by rows: T(n, k) = smallest base b > 1 such that p = prime(n) is the k-th base-b Wieferich prime for k = 1, 2, 3, ..., n.

Original entry on oeis.org

5, 8, 17, 7, 26, 449, 30, 18, 197, 557, 3, 9, 118, 1207, 19601, 22, 146, 19, 361, 8201, 132857, 38, 40, 224, 249, 4625, 296449, 4486949, 54, 28, 68, 99, 4033, 4625, 296449, 126664001, 42, 130, 28, 118, 557, 8201, 997757, 24800401, 2363321449, 14, 41, 374, 1745, 901, 46826, 217682, 9312157, 758427193, 5229752849
Offset: 1

Views

Author

Felix Fröhlich, Jun 10 2015

Keywords

Examples

			T(4, 3) = 197, because 197 is the smallest base b such that p = prime(4) = 7 is the 3rd base-b Wieferich prime.
Triangle T(n, k) starts:
  5;
  8,  17;
  7,  26,  449;
  30, 18,  197, 557;
  3,  9,   118, 1207, 19601;
  22, 146, 19,  361,  8201,  132857;
  38, 40,  224, 249,  4625,  296449, 4486949;
  54, 28,  68,  99,   4033,  4625,   296449,  126664001;
  42, 130, 28,  118,  557,   8201,   997757,  24800401,  2363321449;
		

Crossrefs

Cf. A256236 (diagonal). A286816.

Programs

  • PARI
    nextwiefbase(n, a) = a++; while(Mod(a, n^2)^(n-1)!=1, a++); a
    wiefrank(n, a) = i=0; forprime(p=1, n, if(Mod(a, p^2)^(p-1)==1, i++)); i
    trianglerows(n) = i=1; while(i <= n, p=prime(i); for(k=1, i, b=2; while(wiefrank(p, b)!=k, b=nextwiefbase(p, b)); print1(b, ", ")); print(""); i++)
    trianglerows(9) \\ print first nine rows of the triangle

Extensions

More terms from Max Alekseyev, Oct 14 2023

A270776 Smallest non-Wieferich prime to base n, i.e., smallest prime p such that n^(p-1) != 1 (mod p^2).

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2
Offset: 2

Views

Author

Felix Fröhlich, Mar 22 2016

Keywords

Comments

A256236 gives the smallest i such that a(i) = A000040(n).
a(n) > 2 iff A039951(n) = 2.
a(n) > 3 iff A268352(n) = 3.
Does every prime appear in the sequence?
It is easy to see that the answer to the previous question is "yes" if and only if A256236 is infinite.
The ABC-(k, Epsilon) conjecture with k >= 2 and Epsilon > 0 such that 1/(1/Epsilon + 1) + 1/k <= log(2)/(24*log(a)) implies that a(n) exists for all n (cf. Broughan, 2006; theorem 5.6).

Examples

			The sequence of base-17 Wieferich primes (A128668) starts 2, 3, 46021. Thus the smallest non-Wieferich prime to base 17 is 5 and hence a(17) = 5.
		

Crossrefs

Programs

  • Mathematica
    A270776[n_] := NestWhile[#+1 &, 2, CompositeQ[#] || PowerMod[n, #-1, #^2] == 1 &];
    Array[A270776, 100, 2] (* Paolo Xausa, Aug 15 2025 *)
  • PARI
    a(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)!=1, return(p)))

A309383 a(n) is the smallest b > 1 such that when c is equal to any of the first n composites the congruence b^(c-1) == 1 (mod c) is satisfied, i.e., smallest b larger than 1 such that any member of the set of smallest n composites is a base-b Fermat pseudoprime.

Original entry on oeis.org

5, 13, 25, 73, 361, 361, 2521, 2521, 5041, 5041, 5041, 5041, 55441, 55441, 277201, 3603601, 10810801, 10810801, 10810801, 21621601, 21621601, 367567201, 367567201, 367567201
Offset: 1

Views

Author

Felix Fröhlich, Jul 27 2019

Keywords

Examples

			For n = 4: The four smallest composites are 4, 6, 8, 9 and for those four values of c the congruence b^(c-1) == 1 (mod c) is satisfied with b = 73. Since 73 is the smallest such value of b > 1, a(4) = 73.
		

Crossrefs

Programs

  • PARI
    composites(n) = my(v=[]); forcomposite(c=1, , v=concat(v, [c]); if(#v >= n, return(v)))
    a(n) = my(cp=composites(n)); for(b=2, oo, for(k=1, #cp, if(Mod(b, cp[k])^(cp[k]-1)!=1, break, if(k==#cp, return(b)))))
Previous Showing 11-18 of 18 results.