cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A258650 Tenth arithmetic derivative of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 0, 8592, 0, 0, 0, 20096, 0, 0, 3424, 70464, 0, 0, 0, 16304, 0, 0, 0, 32624, 0, 1520, 27, 70464, 0, 0, 0, 235072, 0, 0, 8592, 47872, 0, 0, 20096, 24640, 0, 0, 0, 65264, 8592, 0, 0, 130544, 0, 3424, 8144, 47872, 0, 57996, 20096, 198656, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2015

Keywords

Crossrefs

Column k=10 of A258651.
Cf. A003415.

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    a:= n-> A(n, 10):
    seq(a(n), n=0..70);
  • Python
    from sympy import factorint
    def A258650(n):
        for _ in range(10):
            if n <= 1: return 0
            n = sum((n*e//p for p,e in factorint(n).items()))
        return n # Chai Wah Wu, Nov 03 2022

Formula

a(n) = A003415^10(n).

A328383 a(n) gives the number of iterations of x -> A003415(x) needed to reach the first number which is either a divisor or multiple of n, but not both at the same time. If no such number can ever be reached, a(n) is 0 (when either n is of the form p^p, or if the iteration would never stop). When the number reached is a divisor of n, a(n) is -1 * iteration count.

Original entry on oeis.org

-1, -1, 0, -1, -2, -1, 2, -3, -2, -1, 9, -1, -4, 23, 1, -1, -4, -1, 5, -2, -2, -1, 2, -3, 24, 0, 18, -1, -2, -1, 6, -5, -2, 85, 7, -1, -4, 21, 10, -1, -2, -1, 35, 53, -4, -1, 2, -5, 44, 18, 34, -1, 2, 21, 4, -3, -2, -1, 16, -1, -6, 21, 1, -5, -2, -1, 7, 85, -2, -1, 4, -1, 23, 55, 5, -4, -2, -1, 4, 9, -2, -1, 42, -3, 42
Offset: 2

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

The absolute value of a(n) tells how many columns right from the leftmost column in array A258651 one needs to go at row n, before one (again) finds either a divisor or a multiple of n, with 0's reserved for cases like 4 and 27 where the same value continues forever. If one finds a divisor before a multiple, then the value of a(n) will be negative, otherwise it will be positive.
Question: What is the value of a(91) ?

Examples

			For n = 6, its arithmetic derivative A003415(6) = 5 is neither its divisor nor its multiple, but the second arithmetic derivative A003415(5) = 1 is its divisor, thus a(6) = -2.
For n = 8, its arithmetic derivative A003415(8) = 12 is neither its divisor nor its multiple, but the second arithmetic derivative A003415(12) = 16 is its multiple, thus a(8) = +2.
Numbers reached for n=2..28 (with positions of the form p^p are filled with the same p^p): 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 8592, 1, 1, 410267320320, 32, 1, 1, 1, 240, 7, 1, 1, 48, 1, 410267320320, 27, 9541095424. For example, we have a(12) = 9 and the 9th arithmetic derivative of 12 is A003415^(9)(12) = 8592 = 716*12.
		

Crossrefs

Cf. A051674 (indices of zeros provided for all n >= 2 either a divisor or multiple can be found).
Cf. A256750, A328248, A328384 for similar counts.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A328383(n) = { my(u=A003415(n),k=1); if(u==n,return(0)); while((n%u) && (u%n), k++; u = A003415(u)); if(u%n,-k,k); };

Formula

a(A000040(n)) = -1.
a(A051674(n)) = 0.

A328384 If n is of the form p^p, a(n) = 0, otherwise a(n) gives the number of iterations of x -> A003415(x) needed to reach the first number different from n which is either a prime, or whose degree (A051903) differs from the degree of n. If the degree of the final number is <= that of n, then a(n) = -1 * iteration count.

Original entry on oeis.org

-1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -2, -1, -1, -1, -1, 2, 0, 1, -1, -1, -1, -1, 2, -1, 1, 3, -1, -3, 1, -1, -1, -1, -1, 1, -1, 1, -1, 3, -1, -2, 1, 1, -1, 1, 1, -1, -2, -1, -1, 2, -1, 3, -1, 2, 1, -1, -1, 1, 3, -1, -1, -1, -1, 2, -1, 1, 1, -1, -1, 5, -1, -1, -1, 2, -2, 1, 1, -1, -1, -1, 1, 1, -2, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 15 2019

Keywords

Comments

The records -1, 0, 1, 2, 3, 5, 8, 10, 11, 13, ... occur at n = 1, 4, 12, 26, 36, 80, 108, 4887, 18688, 22384, ...

Examples

			For n = 21 = 3*7, A051903(21) = 1, A003415(21) = 10 = 2*5, is of the same degree as A051903(10) = 1, but then A003415(10) = 7, which is a prime, having degree <= of the starting value (as we have A051903(7) <= A051903(21)), thus a(21) = -1 * 2 = -2.
For n = 33 = 3*11, A051903(33) = 1, A003415(33) = 14 = 2*7, is of the same degree, but on the second iteration, A003415(14) = 9 = 3^2, with A051903(9) = 2, which is larger than the initial degree, thus a(33) = +2.
		

Crossrefs

Cf. A328385 (the number found in the iteration).
Cf. A256750, A328248, A328383 for similar counts.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A051903(n) = if((n<=1),n-1,vecmax(factor(n)[, 2]));
    A328384(n) = { my(d=A051903(n), u=A003415(n), k=1); if(u==n,return(0)); while(u && (u!=n) && !isprime(u) && A051903(u)==d, k++; n = u; u = A003415(u)); if(A051903(u)<=d,-k,k); };

Formula

a(1) = -1 as 0 is here considered having a smaller degree than 1.
a(p) = -1 for all primes.
a(A051674(n)) = 0.
a(A157037(n)) = -1.
a(A328252(n)) = -1.
a(A328320(n)) = -1.

A185232 n-th arithmetic derivative of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 0, 0, 1520, 0, 0, 0, 235072, 0, 0, 705280, 278539264, 0, 0, 0, 226593936, 0, 0, 0, 295266178368, 0, 24143851798528, 27, 10557680820452065280, 0, 0, 0, 2821525007683005301391360, 0, 0, 2821525007683005301391360, 43942858408664114852524638339072
Offset: 0

Views

Author

Keywords

Comments

a(n) is zero for all prime n.

Crossrefs

Cf. A003415.
Main diagonal of A258651.

Programs

  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_] := Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[Nest[dn,n,n], {n,50}]
  • Python
    from sympy import factorint
    def A185232(n):
        for _ in range(n):
            if n <= 1: return 0
            n = sum((n*e//p for p,e in factorint(n).items()))
        return n # Chai Wah Wu, Nov 03 2022

A369638 The n-th arithmetic derivative of 2^7.

Original entry on oeis.org

128, 448, 1408, 5056, 15232, 56384, 169216, 677120, 2902784, 12008192, 49750016, 323383296, 2048106496, 13312700416, 79908855808, 520115646464, 3120693882880, 19851642843136, 121321447460864, 754017659596800, 5330629212856320, 37592273278603264, 230970707522453504, 1736195064174952448, 12244744136813133824
Offset: 0

Views

Author

Antti Karttunen, Feb 04 2024

Keywords

Comments

Iterates of the map k -> k', starting from k=128, where k' stands for the arithmetic derivative, A003415.

Crossrefs

Row 128 of A258651.
Cf. A003415, A369652 [= A328114(a(n))].
Cf. also A001787, A129150.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A369638(n) = if(!n,128,A003415(A369638(n-1)));
    
  • PARI
    up_to = 89;
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A369638list(up_to) = { my(v=vector(up_to)); v[1] = 128;
    for(i=2,up_to,print1(i,", "); v[i] = A003415(v[i-1])); (v); };
    v369638 = A369638list(1+up_to);
    A369638(n) = v369638[1+n];

Formula

a(0) = 128, and for n > 0, a(n) = A003415(a(n-1)).

A258652 Sum of the k-th arithmetic derivative of n-k for k=0..n.

Original entry on oeis.org

0, 1, 2, 4, 5, 9, 11, 16, 14, 25, 36, 59, 99, 209, 419, 860, 1730, 3862, 9464, 21868, 74371, 244648, 727345, 3098351, 13469007, 56269849, 281642632, 1406177909, 9597415332, 58891421656, 411673964638, 3406742649805, 24202753250241, 176482943622608
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2015

Keywords

Crossrefs

Antidiagonal sums of A258651.
Cf. A003415.

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    a:= proc(n) option remember; add(A(h, n-h), h=0..n) end:
    seq(a(n), n=0..40);
  • Mathematica
    d[n_ /; n>1] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; d[_] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    a[n_] := a[n] = Sum[A[h, n-h], {h, 0, n}];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 01 2018, from Maple *)

Formula

a(n) = Sum_{k=0..n} A258651(n-k,k).
Previous Showing 11-16 of 16 results.