cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A363117 Decimal expansion of Product_{k>=1} (1 - exp(-7*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 1, 8, 5, 7, 3, 1, 5, 4, 1, 7, 2, 2, 4, 3, 6, 5, 8, 3, 8, 2, 9, 0, 1, 2, 3, 6, 4, 6, 2, 9, 1, 9, 5, 6, 0, 2, 5, 7, 0, 7, 6, 4, 9, 0, 2, 9, 8, 1, 2, 2, 0, 8, 6, 1, 0, 0, 1, 1, 7, 6, 6, 9, 4, 5, 4, 3, 5, 0, 1, 4, 7, 6, 7, 0, 9, 9, 1, 9, 7, 6, 5, 2, 7, 6, 7, 7, 8, 9, 3, 4, 4, 1, 7, 5, 6, 3
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999718573154172243658382901236462919560257076490298122086100117...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(7*Pi/24) * Gamma[1/4] * ((Sqrt[5 - Sqrt[7]] - Sqrt[3*Sqrt[7] - 7]) * (2^(1/4) * Sqrt[5 + Sqrt[7]] + (56 + 23*Sqrt[7])^(1/4)))^(1/4) / (2^(19/16) * 7^(7/16) * Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-7*Pi)], 10, 120][[1]]

Formula

Equals exp(7*Pi/24) * Gamma(1/4) * ((sqrt(5 - sqrt(7)) - sqrt(3*sqrt(7) - 7)) * (2^(1/4) * sqrt(5 + sqrt(7)) + (56 + 23*sqrt(7))^(1/4)))^(1/4) / (2^(19/16) * 7^(7/16) * Pi^(3/4)).

A363118 Decimal expansion of Product_{k>=1} (1 - exp(-9*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 4, 7, 4, 4, 5, 1, 4, 8, 2, 3, 9, 9, 0, 7, 8, 9, 4, 3, 2, 3, 3, 3, 9, 4, 9, 2, 8, 7, 9, 7, 1, 6, 4, 4, 0, 0, 5, 2, 7, 5, 1, 3, 4, 3, 8, 8, 1, 9, 8, 7, 3, 9, 1, 8, 2, 6, 0, 6, 6, 0, 2, 4, 0, 5, 6, 1, 9, 2, 1, 1, 3, 2, 7, 4, 3, 6, 9, 7, 0, 9, 0, 8, 3, 8, 4, 0, 0, 8, 2, 7, 2, 0, 3, 0
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999999474451482399078943233394928797164400527513438819873918260...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(3*Pi/8) * Gamma[1/4] * ((3*(6 + 7*Sqrt[3] + 3*Sqrt[14*Sqrt[3] - 15]))^(1/3) - 3)^(1/3) / (3 * 2^(7/8) * Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-9*Pi)], 10, 120][[1]]

Formula

Equals exp(3*Pi/8) * Gamma(1/4) * ((3*(6 + 7*sqrt(3) + 3*sqrt(14*sqrt(3) - 15)))^(1/3) - 3)^(1/3) / (3 * 2^(7/8) * Pi^(3/4)).

A363119 Decimal expansion of Product_{k>=1} (1 - exp(-14*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 2, 0, 7, 9, 8, 9, 3, 0, 4, 9, 2, 0, 1, 8, 8, 7, 7, 3, 5, 7, 8, 2, 1, 2, 4, 8, 3, 6, 1, 1, 1, 5, 7, 9, 6, 8, 4, 9, 9, 8, 0, 3, 8, 4, 1, 1, 0, 8, 1, 1, 1, 3, 1, 5, 0, 8, 1, 3, 3, 4, 4, 1, 9, 1, 3, 7, 5, 6, 3, 4, 7, 6, 7, 2, 4, 9, 8, 5, 6, 5, 1, 3, 8, 9, 7, 0, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999999999999920798930492018877357821248361115796849980384110811...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[E^(7*Pi/12) * Gamma[1/4] * Sqrt[Sqrt[5 - Sqrt[7]] - Sqrt[3*Sqrt[7] - 7]] / (2^(13/8) * 7^(7/16) * Pi^(3/4)), 10, 120][[1]]
    RealDigits[QPochhammer[E^(-14*Pi)], 10, 120][[1]]

Formula

Equals exp(7*Pi/12) * Gamma(1/4) * sqrt(sqrt(5 - sqrt(7)) - sqrt(3*sqrt(7) - 7)) / (2^(13/8) * 7^(7/16) * Pi^(3/4)).

A363120 Decimal expansion of Product_{k>=1} (1 - exp(-18*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 7, 2, 3, 7, 9, 8, 7, 5, 5, 6, 4, 7, 7, 6, 4, 6, 8, 4, 5, 1, 2, 4, 2, 7, 2, 0, 4, 4, 4, 8, 2, 4, 4, 3, 6, 6, 1, 8, 8, 1, 9, 7, 0, 8, 7, 1, 6, 5, 9, 0, 2, 5, 6, 0, 8, 6, 2, 5, 8, 9, 3, 9, 4, 7, 0, 4, 7, 9, 0, 6, 5, 8, 4, 0, 2, 2, 2, 1, 2, 8, 2, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 15 2023

Keywords

Examples

			0.999999999999999999999999723798755647764684512427204448244366188197087...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-18*Pi)], 10, 120][[1]]
    RealDigits[E^(3*Pi/4) * Gamma[1/4] * (Sqrt[6]*(2 + Sqrt[3])^(1/6) - 3)^(1/3) / (6*Pi^(3/4)), 10, 120][[1]]

Formula

Equals exp(3*Pi/4) * Gamma(1/4) * (sqrt(6)*(2 + sqrt(3))^(1/6) - 3)^(1/3) / (6*Pi^(3/4)).

A363081 Decimal expansion of Product_{k>=1} (1 - exp(-11*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 0, 1, 8, 5, 6, 8, 2, 4, 0, 6, 4, 6, 7, 6, 6, 7, 6, 8, 5, 3, 2, 4, 8, 9, 0, 1, 8, 6, 4, 9, 8, 5, 2, 3, 2, 4, 6, 5, 3, 1, 7, 4, 8, 5, 0, 1, 4, 4, 0, 7, 2, 2, 3, 2, 0, 8, 7, 3, 1, 8, 2, 0, 4, 7, 2, 7, 1, 7, 8, 5, 7, 6, 2, 3, 0, 8, 1, 6, 0, 2, 5, 5, 8, 6, 2, 2, 6, 0, 1, 2, 6
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2023

Keywords

Examples

			0.9999999999999990185682406467667685324890186498523246531748501440722320873182...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-11*Pi)], 10, 120][[1]]
    RealDigits[QPochhammer[E^(-22*Pi)]^(5/2) / QPochhammer[E^(-44*Pi)] / EllipticTheta[3, 0, Exp[-11*Pi]]^(1/2), 10, 120][[1]]
    RealDigits[E^(11*Pi/24) * Gamma[1/4] * (((-3 + Sqrt[11])^(1/4) * Sqrt[((2*(47 - 27*Sqrt[3])^(1/6) + (47 + 27*Sqrt[3])^(1/6)* Sqrt[7 + Sqrt[33]]) * (2 + ((11 + 3*Sqrt[11]) * (4 - 3*Sqrt[3] + 3*Sqrt[11]))^(1/3) + (143 + 33*Sqrt[3] + 45*Sqrt[11] + 9*Sqrt[33])^(1/3))) / (2*(47 - 27*Sqrt[3])^(1/6) * (4 + 3*Sqrt[3] + Sqrt[11]) + (47 + 27*Sqrt[3])^(1/6) * (4 - 3*Sqrt[3] + Sqrt[11]) * Sqrt[7 + Sqrt[33]])]) / (6^(7/8)*(-(11/(-4*22^(1/3) + (1490 + 837*Sqrt[3] - 351*Sqrt[11] - 306*Sqrt[33])^(1/3) + (1490 - 837*Sqrt[3] - 351*Sqrt[11] + 306*Sqrt[33])^(1/3))))^(3/8) * ((1/34012224)*(2 + (11 + 3*Sqrt[11])^(1/3) * ((4 - 3*Sqrt[3] + 3*Sqrt[11])^(1/3) + (4 + 3*Sqrt[3] + 3*Sqrt[11])^(1/3)))^12 - Sqrt[-1 + (2 + (11 + 3*Sqrt[11])^(1/3) * ((4 - 3*Sqrt[3] + 3*Sqrt[11])^(1/3) + (4 + 3*Sqrt[3] + 3*Sqrt[11])^(1/3)))^24 / 1156831381426176])^(1/8))/Pi^(3/4)), 10, 120][[1]]
    RealDigits[E^(11*Pi/24) * Gamma[1/4] * Root[-387420489 + 1578379770*#1^2 - 1299078*#1^6 + 594*#1^10 + 11*#1^12 &, 2] / (Pi^(3/4) * 11^(3/8) * (2*(Root[-5832 - 3888*#1 + 1296*#1^2 + 324*#1^3 - 72*#1^4 - 12*#1^5 + #1^6 &, 2]^12 - Sqrt[-1156831381426176 + Root[-5832 - 3888*#1 + 1296*#1^2 + 324*#1^3 - 72*#1^4 - 12*#1^5 + #1^6 & , 2]^24]))^(1/8)), 10, 120][[1]]

Formula

Equals phi(exp(-22*Pi))^(5/2) / (phi(exp(-44*Pi)) * theta_3(0, exp(-11*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(11*Pi/24) * Gamma(1/4) * (((-3 + sqrt(11))^(1/4) * sqrt(((2*(47 - 27*sqrt(3))^(1/6) + (47 + 27*sqrt(3))^(1/6)* sqrt(7 + sqrt(33))) * (2 + ((11 + 3*sqrt(11)) * (4 - 3*sqrt(3) + 3*sqrt(11)))^(1/3) + (143 + 33*sqrt(3) + 45*sqrt(11) + 9*sqrt(33))^(1/3))) / (2*(47 - 27*sqrt(3))^(1/6) * (4 + 3*sqrt(3) + sqrt(11)) + (47 + 27*sqrt(3))^(1/6) * (4 - 3*sqrt(3) + sqrt(11)) * sqrt(7 + sqrt(33))))) / (6^(7/8)*(-(11/(-4*22^(1/3) + (1490 + 837*sqrt(3) - 351*sqrt(11) - 306*sqrt(33))^(1/3) + (1490 - 837*sqrt(3) - 351*sqrt(11) + 306*sqrt(33))^(1/3))))^(3/8) * ((1/34012224)*(2 + (11 + 3*sqrt(11))^(1/3) * ((4 - 3*sqrt(3) + 3*sqrt(11))^(1/3) + (4 + 3*sqrt(3) + 3*sqrt(11))^(1/3)))^12 - sqrt(-1 + (2 + (11 + 3*sqrt(11))^(1/3) * ((4 - 3*sqrt(3) + 3*sqrt(11))^(1/3) + (4 + 3*sqrt(3) + 3*sqrt(11))^(1/3)))^24 / 1156831381426176))^(1/8)) / Pi^(3/4)).

A363178 Decimal expansion of Product_{k>=1} (1 - exp(-13*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 8, 1, 6, 7, 2, 3, 2, 3, 9, 4, 3, 2, 8, 4, 2, 2, 4, 2, 8, 1, 7, 7, 0, 0, 1, 1, 3, 8, 5, 4, 7, 3, 8, 9, 8, 9, 0, 7, 3, 2, 2, 1, 9, 5, 5, 3, 9, 6, 6, 6, 7, 7, 7, 1, 1, 6, 0, 8, 7, 8, 9, 3, 0, 1, 3, 7, 1, 5, 1, 9, 2, 9, 8, 4, 6, 8, 4, 9, 8, 8, 2, 6, 3, 1, 6, 0, 9, 2, 4
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2023

Keywords

Examples

			0.99999999999999999816723239432842242817700113854738989073221955396667771...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363119 phi(exp(-14*Pi)), A363179 phi(exp(-15*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-13*Pi)], 10, 120][[1]]
    RealDigits[QPochhammer[E^(-26*Pi)]^(5/2) / QPochhammer[E^(-52*Pi)] / EllipticTheta[3, 0, Exp[-13*Pi]]^(1/2), 10, 120][[1]]
    RealDigits[E^(13*Pi/24) * Gamma[1/4] * ((-(11 - 6*Sqrt[3])^(1/6) + (11 + 6*Sqrt[3])^(1/6)) / ((11 - 6*Sqrt[3])^(1/6) * (1 + 2*Sqrt[3]) + (-1 + 2*Sqrt[3]) * (11 + 6*Sqrt[3])^(1/6)))^(1/4) * (-5 - (-91 + 39*Sqrt[3] - 18*Sqrt[13] + 15*Sqrt[39])^(1/3) + (91 + 39*Sqrt[3] + 18*Sqrt[13] + 15*Sqrt[39])^(1/3))^(3/4) * (Sqrt[Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)]] / (Pi^(3/4) * 3 * 2^(11/8) * Sqrt[13] * ((1/2985984)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^12 - Sqrt[-1 + (1/8916100448256)*(Sqrt[14 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)] + Sqrt[26 + (13*(821 - 72*Sqrt[3]))^(1/3) + (13*(821 + 72*Sqrt[3]))^(1/3)])^24])^(1/8))), 10, 120][[1]]
    RealDigits[E^(13*Pi/24) * Gamma[1/4] / (Pi^(3/4) * 2^(7/8) * Sqrt[13*Root[1 + 22*#1 + 224*#1^2 + 1366*#1^3 + 5456*#1^4 + 14758*#1^5 + 27158*#1^6 + 33094*#1^7 + 23936*#1^8 + 8854*#1^9 + 7952*#1^10 - 22058*#1^11 + #1^12 & , 1]]), 10, 120][[1]]

Formula

Equals phi(exp(-26*Pi))^(5/2) / (phi(exp(-52*Pi)) * theta_3(0, exp(-13*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(13*Pi/24) * Gamma(1/4) * ((-(11 - 6*sqrt(3))^(1/6) + (11 + 6*sqrt(3))^(1/6)) / ((11 - 6*sqrt(3))^(1/6) * (1 + 2*sqrt(3)) + (-1 + 2*sqrt(3)) * (11 + 6*sqrt(3))^(1/6)))^(1/4) * (-5 - (-91 + 39*sqrt(3) - 18*sqrt(13) + 15*sqrt(39))^(1/3) + (91 + 39*sqrt(3) + 18*sqrt(13) + 15*sqrt(39))^(1/3))^(3/4) * (sqrt(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3))) / (Pi^(3/4) * 3 * 2^(11/8) * sqrt(13) * ((1/2985984)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^12 - sqrt(-1 + (1/8916100448256)*(sqrt(14 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)) + sqrt(26 + (13*(821 - 72*sqrt(3)))^(1/3) + (13*(821 + 72*sqrt(3)))^(1/3)))^24))^(1/8))).

A363179 Decimal expansion of Product_{k>=1} (1 - exp(-15*Pi*k)).

Original entry on oeis.org

9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 6, 5, 7, 7, 4, 1, 1, 4, 5, 5, 8, 7, 8, 7, 5, 9, 1, 3, 2, 1, 9, 2, 0, 8, 5, 4, 4, 7, 3, 4, 8, 9, 1, 0, 6, 1, 9, 1, 4, 0, 0, 1, 3, 9, 9, 8, 5, 6, 2, 8, 4, 4, 1, 8, 9, 2, 9, 8, 6, 8, 0, 6, 4, 2, 7, 6, 6, 1, 1, 7, 3, 6, 6, 7, 5, 6, 5, 5, 0, 1, 5, 3, 8, 1, 7, 8
Offset: 0

Views

Author

Vaclav Kotesovec, May 19 2023

Keywords

Examples

			0.99999999999999999999657741145587875913219208544734891061914001399856284...
		

Crossrefs

Cf. A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A363117 phi(exp(-7*Pi)), A259151 phi(exp(-8*Pi)), A363118 phi(exp(-9*Pi)), A363019 phi(exp(-10*Pi)), A363081 phi(exp(-11*Pi)), A363020 phi(exp(-12*Pi)), A363178 phi(exp(-13*Pi)), A363119 phi(exp(-14*Pi)), A292864 phi(exp(-16*Pi)), A363120 phi(exp(-18*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    RealDigits[QPochhammer[E^(-15*Pi)], 10, 120][[1]]
    RealDigits[QPochhammer[E^(-30*Pi)]^(5/2) / QPochhammer[E^(-60*Pi)] / EllipticTheta[3, 0, Exp[-15*Pi]]^(1/2), 10, 120][[1]]
    RealDigits[E^(5*Pi/8) * Gamma[1/4] * (2 - Sqrt[3])^(55/24) * (2 + Sqrt[3])^(13/12) * (Sqrt[5] - 2)^(5/4) * (3 + Sqrt[5]) * (2 + Sqrt[2]*3^(3/4)*5^(1/4) + Sqrt[2]*15^(1/4))^(3/2) * (-15^(1/4) + Sqrt[4 + Sqrt[15]])^5 * ((15^(1/4) + Sqrt[4 + Sqrt[15]])^(5/2) / (Pi^(3/4) * 2048 * 3^(3/8) * Sqrt[5] * (2*(7 + 3*Sqrt[3] + Sqrt[5] + Sqrt[2]*3^(1/4)*5^(3/4) + Sqrt[2]*15^(1/4) + Sqrt[15]))^(1/4) * (((2 + Sqrt[3])^4 * (1 + Sqrt[5])^12 * (15^(1/4) + Sqrt[4 + Sqrt[15]])^12) / 16777216 - Sqrt[-1 + ((2 + Sqrt[3])^8 * (1 + Sqrt[5])^24 * (15^(1/4) + Sqrt[4 + Sqrt[15]])^24) / 281474976710656])^(1/8))), 10, 120][[1]]

Formula

Equals phi(exp(-30*Pi))^(5/2) / (phi(exp(-60*Pi)) * theta_3(0, exp(-15*Pi))^(1/2)), where phi(q) = Product_{k>=1} (1 - q^k) is the Euler modular function and theta_3 is the 3rd Jacobi theta function.
Equals exp(5*Pi/8) * Gamma(1/4) * (2 - sqrt(3))^(55/24) * (2 + sqrt(3))^(13/12) * (sqrt(5) - 2)^(5/4) * (3 + sqrt(5)) * (2 + sqrt(2)*3^(3/4)*5^(1/4) + sqrt(2)*15^(1/4))^(3/2) * (-15^(1/4) + sqrt(4 + sqrt(15)))^5 * ((15^(1/4) + sqrt(4 + sqrt(15)))^(5/2) / (Pi^(3/4) * 2048 * 3^(3/8) * sqrt(5) * (2*(7 + 3*sqrt(3) + sqrt(5) + sqrt(2)*3^(1/4)*5^(3/4) + sqrt(2)*15^(1/4) + sqrt(15)))^(1/4) * (((2 + sqrt(3))^4 * (1 + sqrt(5))^12 * (15^(1/4) + sqrt(4 + sqrt(15)))^12) / 16777216 - sqrt(-1 + ((2 + sqrt(3))^8 * (1 + sqrt(5))^24 * (15^(1/4) + sqrt(4 + sqrt(15)))^24) / 281474976710656))^(1/8))).

A259147 Decimal expansion of phi(exp(-Pi/2)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.

Original entry on oeis.org

7, 4, 9, 3, 1, 1, 4, 7, 7, 8, 0, 0, 0, 0, 2, 7, 8, 7, 4, 2, 9, 6, 2, 5, 6, 5, 8, 7, 8, 3, 3, 8, 0, 3, 1, 1, 9, 0, 4, 0, 9, 2, 5, 2, 7, 9, 0, 1, 1, 7, 3, 9, 2, 8, 3, 1, 2, 0, 6, 7, 3, 1, 0, 1, 3, 1, 3, 5, 8, 8, 5, 3, 7, 5, 5, 1, 7, 4, 7, 2, 5, 8, 6, 1, 3, 4, 7, 5, 6, 3, 5, 7, 6, 5, 5, 8, 5, 8, 4, 0, 4, 6, 3, 7, 9
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2015

Keywords

Examples

			0.74931147780000278742962565878338031190409252790117392831206731...
		

Crossrefs

Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).

Programs

  • Mathematica
    phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi/2]], 10, 105] // First

Formula

phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi/2)) = ((sqrt(2) - 1)^(1/3)*(4 + 3*sqrt(2))^(1/24) * exp(Pi/48) * Gamma(1/4))/(2^(5/6)*Pi^(3/4)).
phi(exp(-Pi/2)) = (sqrt(2)-1)^(1/4) * exp(Pi/48) * Gamma(1/4)/(2^(13/16)*Pi^(3/4)). - Vaclav Kotesovec, Jul 03 2017

A000706 Expansion of modular function 1/E_3 (cf. A013973).

Original entry on oeis.org

1, 504, 270648, 144912096, 77599626552, 41553943041744, 22251789971649504, 11915647845248387520, 6380729991419236488504, 3416827666558895485479576, 1829682703808504464920468048, 979779820147442370107345764512
Offset: 0

Views

Author

Keywords

Comments

Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 + 504*q + 270648*q^2 + 144912096*q^3 + 77599626552*q^4 + 41553943041744*q^5 + ...
		

References

  • S. Ramanujan, Collected Papers of Srinivasa Ramanujan, pp. 115-7, Ed. G. H. Hardy et al., AMS Chelsea 2000, p. 317.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / (1 + Sum[ -504 DivisorSigma[ 5, k] q^k, {k, n}]), {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {t2 = EllipticTheta[ 2, 0, q]^4, t3 = EllipticTheta[ 3, 0, q]^4}, 1 / (t2^3 - 33 (t2 + t3) t2 t3 + t3^3)], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {t3 = EllipticTheta[ 3, 0, q]^4, t4 = EllipticTheta[ 4, 0, q]^4}, 2 / (t3^3 - 3 (t3 - t4)^2 (t3 + t4) + t4^3) ], {q, 0, 2 n}]; (* Michael Somos, Apr 26 2015 *)
    a[ n_] := SeriesCoefficient[ With[ {e1 = QPochhammer[ q]^8, e4 = 32 q QPochhammer[ q^4]^8}, QPochhammer[ q^2]^12 / ((e1 + e4) (e1^2 - 16 e1 e4 - 8 e4^2)) ], {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / sum(k=1, n, -504*sigma(k, 5)*x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Aug 09 2007 */
    
  • PARI
    {a(n) = my(A, e1, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x + A)^8; e4 = 32 * x * eta(x^4 + A)^8; polcoeff( eta(x^2 + A)^12 / ((e1 + e4) * (e1^2 - 16*e1*e4 - 8*e4^2)), n))}; /* Michael Somos, Apr 26 2015 */

Formula

Expansion of 1 / R(q) in powers of q where R() is a Ramanujan Lambert series.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^2*w^2 + 121*u^2*w^2 + 4096*u^2*v^2 - 8*v^3*w - 512*u*v^3 - 66*u*v*w^2 + 592*u*v^2*w - 4224*u^2*v*w. - Michael Somos, Aug 09 2007
Convolution inverse of A013973.
Asymptotics [Ramanujan]: a(n) ~ c * exp(2*Pi*n), where c = 2 / (96^2 * exp(-8*Pi/3) * Product_{j>=1} (1-exp(-4*Pi*j))^16) = 8192 * Pi^12 / (9 * Gamma(1/4)^16) = 0.943732053240742502013763912292610373458373085328537967959184338319972... . - Vaclav Kotesovec, Nov 08 2015

A292821 Decimal expansion of Product_{k>=1} (1 + exp(-2*Pi*k)).

Original entry on oeis.org

1, 0, 0, 1, 8, 7, 0, 9, 4, 3, 1, 2, 3, 2, 7, 9, 8, 8, 6, 4, 6, 3, 5, 3, 4, 0, 8, 7, 9, 6, 7, 4, 1, 5, 2, 1, 8, 0, 8, 3, 1, 9, 9, 7, 1, 9, 5, 0, 2, 6, 3, 1, 2, 5, 9, 1, 9, 4, 9, 8, 6, 3, 9, 1, 2, 9, 7, 5, 2, 1, 4, 0, 0, 9, 4, 4, 5, 5, 4, 6, 5, 7, 3, 8, 5, 3, 7, 9, 0, 4, 6, 9, 8, 4, 3, 9, 9, 0, 2, 9, 4, 0, 2, 6, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 24 2017

Keywords

Examples

			1.001870943123279886463534087967415218083199719502631259194986391297521...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(Pi/12) / 2^(3/8), 10, 120][[1]]
    RealDigits[QPochhammer[-1, E^(-2*Pi)]/2, 10, 120][[1]]
  • PARI
    exp(Pi/12)/sqrtn(8,8) \\ Charles R Greathouse IV, Mar 13 2018

Formula

Equals exp(Pi/12) / 2^(3/8).
Equals A259150 / A259149.
Previous Showing 11-20 of 26 results. Next