cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A305106 Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 34, 55, 87, 138, 211, 324, 486, 727, 1079, 1584, 2305, 3337, 4789, 6830, 9712, 13689, 19225, 26841, 37322, 51598, 71108, 97580, 133350, 181558, 246335, 332991, 448706, 602607, 806732, 1077333, 1433885, 1903682, 2520246, 3328549, 4383929
Offset: 0

Views

Author

Gus Wiseman, May 25 2018

Keywords

Examples

			The a(6) = 21 unitary factorizations:
(13) (21) (22) (25) (27) (28) (30) (36) (40) (48) (64)
(2*11) (2*15) (3*7) (3*10) (3*16) (4*7) (4*9) (5*6) (5*8)
(2*3*5)
The a(6) = 21 multiset partitions:
{{6}}
{{2,4}}
{{1,5}}
{{3,3}}
{{2,2,2}}
{{1,1,4}}
{{1,2,3}}
{{1,1,2,2}}
{{1,1,1,3}}
{{1,1,1,1,2}}
{{1,1,1,1,1,1}}
{{1},{5}}
{{1},{2,3}}
{{2},{4}}
{{2},{1,3}}
{{2},{1,1,1,1}}
{{1,1},{4}}
{{1,1},{2,2}}
{{3},{1,2}}
{{3},{1,1,1}}
{{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[BellB[Length[Union[y]]],{y,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
    T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
    a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz in A321878 *)

A327521 Number of factorizations of the n-th squarefree number A005117(n) into squarefree numbers > 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 5, 1, 2, 2, 2, 1, 2, 2, 1, 5, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 5, 1, 2, 5, 1, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 5, 1, 5, 2, 1, 1, 5, 2, 1, 5, 2, 2, 2, 2, 2, 1, 2, 5, 1, 2, 2, 1, 5, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2019

Keywords

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    nn=100;
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    y=Select[Range[nn],SquareFreeQ];
    Table[Length[facsusing[Rest[y],n]],{n,y}]

Formula

A327905 FDH numbers of pairwise coprime sets.

Original entry on oeis.org

2, 6, 8, 10, 12, 14, 18, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 38, 40, 42, 44, 46, 48, 50, 52, 55, 56, 57, 58, 62, 63, 66, 68, 70, 74, 75, 76, 77, 80, 82, 84, 86, 88, 91, 93, 94, 95, 96, 98, 99, 100, 104, 106, 110, 112, 114, 116, 118, 122, 123, 125, 126, 132
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

Let f(n) = A050376(n) be the n-th Fermi-Dirac prime. The FDH-number of a strict partition or finite set {y_1,...,y_k} is f(y_1)*...*f(y_k).
We use the Mathematica function CoprimeQ, meaning a singleton is not coprime unless it is {1}.

Examples

			The sequence of terms together with their corresponding coprime sets begins:
   2: {1}
   6: {1,2}
   8: {1,3}
  10: {1,4}
  12: {2,3}
  14: {1,5}
  18: {1,6}
  20: {3,4}
  21: {2,5}
  22: {1,7}
  24: {1,2,3}
  26: {1,8}
  28: {3,5}
  32: {1,9}
  33: {2,7}
  34: {1,10}
  35: {4,5}
  38: {1,11}
  40: {1,3,4}
  42: {1,2,5}
		

Crossrefs

Heinz numbers of pairwise coprime partitions are A302696 (all), A302797 (strict), A302569 (with singletons), and A302798 (strict with singletons).
FDH numbers of relatively prime sets are A319827.

Programs

  • Mathematica
    FDfactor[n_]:=If[n==1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=100;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Select[Range[nn],CoprimeQ@@(FDfactor[#]/.FDrules)&]
Previous Showing 21-23 of 23 results.