cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A262953 Expansion of Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(3*k-2)).

Original entry on oeis.org

1, 2, 1, 1, 3, 4, 3, 4, 7, 7, 8, 11, 13, 15, 18, 21, 25, 31, 34, 38, 48, 56, 61, 72, 85, 95, 109, 126, 142, 163, 186, 207, 237, 272, 301, 339, 389, 433, 482, 547, 612, 680, 764, 851, 946, 1061, 1177, 1301, 1455, 1616, 1779, 1977, 2194, 2415, 2670, 2953, 3250
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1)) * (1 + x^(3*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ 5^(1/4) * exp(Pi*sqrt(5*n/2)/3) / (2^(19/12) * sqrt(3) * n^(3/4)).

A284095 Expansion of Product_{k>=0} (1 + x^(8*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 8.

Crossrefs

Cf. Product_{k>=0} (1 + x^(m*k+1)): A261612 (m=3), A169975 (m=4), A280454 (m=5), A280456 (m=6), A280457 (m=7), this sequence (m=8).

Programs

  • Mathematica
    CoefficientList[Series[Product[(1 + x^(8*k + 1)) , {k, 0, 91}], {x, 0, 91}], x] (* Indranil Ghosh, Mar 20 2017 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 8] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 20 2017 *)
  • PARI
    Vec(prod(k=0, 91, (1 + x^(8*k + 1))) + O(x^92)) \\ Indranil Ghosh, Mar 20 2017

Formula

a(n) ~ exp(sqrt(n/6)*Pi/2) / (2^(15/8) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(384*sqrt(6)) - 3*sqrt(3/2)/(2*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017
G.f.: Sum_{k>=0} x^(k*(4*k - 3)) / Product_{j=1..k} (1 - x^(8*j)). - Ilya Gutkovskiy, Nov 24 2020

A261633 Expansion of Product_{k>=0} (1+x^(3*k+1))^3.

Original entry on oeis.org

1, 3, 3, 1, 3, 9, 9, 6, 12, 18, 15, 21, 37, 36, 33, 55, 69, 66, 90, 117, 111, 136, 195, 204, 217, 294, 330, 342, 447, 531, 541, 657, 804, 839, 978, 1215, 1288, 1419, 1755, 1936, 2094, 2535, 2846, 3027, 3588, 4123, 4392, 5073, 5869, 6261, 7080
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^(3*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/3)) / (2 * 3^(1/4) * n^(3/4)).

A261637 Expansion of Product_{k>=0} (1+x^(3*k+1))^4.

Original entry on oeis.org

1, 4, 6, 4, 5, 16, 24, 20, 26, 48, 56, 60, 98, 132, 130, 168, 253, 288, 324, 448, 539, 588, 780, 1000, 1086, 1304, 1690, 1916, 2205, 2812, 3274, 3648, 4507, 5396, 6018, 7200, 8674, 9680, 11250, 13616, 15425, 17532, 20962, 23988, 26960, 31868, 36836, 41164
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+x^(3*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(n)/3) / (2^(1/3) * sqrt(3) * n^(3/4)).
Previous Showing 21-24 of 24 results.