cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A355950 a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).

Original entry on oeis.org

1, 4, 14, 81, 707, 8495, 126145, 2223364, 45270095, 1045270723, 26982695325, 769991073865, 24068076196347, 817782849568143, 30010708874959403, 1182932213483903598, 49844124089150772080, 2235755683827890358557, 106363105981739131891399
Offset: 1

Views

Author

Seiichi Manyama, Jul 21 2022

Keywords

Crossrefs

Partial sums of A262843.

Programs

  • PARI
    a(n) = sum(k=1, n, n\k*k^(k-1));
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^(d-1)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-x^k))/(1-x))
    
  • Python
    def A355950(n): return n*(1+n**(n-2))+sum(k**(k-1)*(n//k) for k in range(2,n)) if n>1 else 1 # Chai Wah Wu, Jul 21 2022

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} d^(d-1).
G.f.: (1/(1-x)) * Sum_{k>0} k^(k-1) * x^k/(1 - x^k).

A359796 a(n) = Sum_{d|n} (2*d)^(d-1).

Original entry on oeis.org

1, 5, 37, 517, 10001, 248873, 7529537, 268435973, 11019960613, 512000010005, 26559922791425, 1521681143418409, 95428956661682177, 6502111422505477189, 478296900000000010037, 37778931862957430145541, 3189059870763703892770817
Offset: 1

Views

Author

Seiichi Manyama, Jan 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (2*#)^(# - 1) &]; Array[a, 20] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (2*d)^(d-1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (2*k)^(k-1)*x^k/(1-x^k)))

Formula

G.f.: Sum_{k>0} (2 * k)^(k-1) * x^k / (1 - x^k).

A359701 a(n) = Sum_{d|n} d^(d + n/d - 2).

Original entry on oeis.org

1, 3, 10, 69, 626, 7812, 117650, 2097425, 43046803, 1000003158, 25937424602, 743008418676, 23298085122482, 793714774077816, 29192926025406980, 1152921504623628545, 48661191875666868482, 2185911559739084235093, 104127350297911241532842
Offset: 1

Views

Author

Seiichi Manyama, Jan 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(# + n/# - 2) &]; Array[a, 20] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d-2));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-k*x^k)))

Formula

G.f.: Sum_{k>0} k^(k-1) * x^k / (1 - k * x^k).
If p is prime, a(p) = 1 + p^(p-1).
Previous Showing 11-13 of 13 results.