A265806
Numerators of primes-only best approximates (POBAs) to 1/(golden ratio) = 1/tau; see Comments.
Original entry on oeis.org
2, 2, 3, 19, 23, 29, 97, 353, 563, 631, 919, 1453, 2207, 15271, 15737, 42797, 49939
Offset: 1
The POBAs to 1/tau start with 2/2, 2/3, 3/5, 19/31, 23/37, 29/47, 97/157, 353/571. For example, if p and q are primes and q > 157, then 97/157 is closer to 1/tau than p/q is.
-
x = 1/GoldenRatio; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265806/A265807 *)
Numerator[tL] (* A265799 *)
Denominator[tL] (* A265798 *)
Numerator[tU] (* A265797 *)
Denominator[tU] (* A265796 *)
Numerator[y] (* A265806 *)
Denominator[y] (* A265807 *)
A265808
Numerators of lower primes-only best approximates (POBAs) to Pi; see Comments.
Original entry on oeis.org
5, 13, 19, 31, 37, 53, 97, 191, 223, 757, 977, 4483, 5237, 9497, 14423, 18061, 30841, 45751, 47881, 60661, 137341, 162901, 177811, 536273, 557573, 577453, 579583, 609403, 610823, 833719, 43354453, 45230587, 104426411, 111304859, 120059441, 185091653, 821656877, 1302520019
Offset: 1
The lower POBAs to Pi start with 5/2, 13/5, 19/7, 31/11, 37/13, 53/17, 97/31, 191/61, 223/71, 757/241, 977/311. For example, if p and q are primes and q > 241, and p/q < Pi, then 757/241 is closer to Pi than p/q is.
-
x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
Numerator[tL] (* A265808 *)
Denominator[tL] (* A265809 *)
Numerator[tU] (* A265810 *)
Denominator[tU] (* A265811 *)
Numerator[y] (* A265812 *)
Denominator[y] (* A265813 *)
A265809
Denominators of lower primes-only best approximates (POBAs) to Pi; see Comments.
Original entry on oeis.org
2, 5, 7, 11, 13, 17, 31, 61, 71, 241, 311, 1427, 1667, 3023, 4591, 5749, 9817, 14563, 15241, 19309, 43717, 51853, 56599, 170701, 177481, 183809, 184487, 193979, 194431, 265381, 13800151, 14397343, 33239959, 35429437, 38216107, 58916503, 261541507, 414604999, 549157573
Offset: 1
The lower POBAs to Pi start with 5/2, 13/5, 19/7, 31/11, 37/13, 53/17, 97/31, 191/61, 223/71, 757/241, 977/311. For example, if p and q are primes and q > 241, and p/q < Pi, then 757/241 is closer to Pi than p/q is.
-
x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
Numerator[tL] (* A265808 *)
Denominator[tL] (* A265809 *)
Numerator[tU] (* A265810 *)
Denominator[tU] (* A265811 *)
Numerator[y] (* A265812 *)
Denominator[y] (* A265813 *)
A265810
Numerators of upper primes-only best approximates (POBAs) to Pi; see Comments.
Original entry on oeis.org
7, 17, 23, 41, 167, 211, 431, 563, 569, 619, 1109, 5413, 10427, 16063, 20323, 28843, 47969, 56489, 71399, 75659, 99089, 107609, 118259, 145949, 203459, 211891, 626443, 1668503, 5628757, 16259473, 20011031, 38144863, 40436969, 72536393, 93379723, 114431749, 136109153, 266173577
Offset: 1
The upper POBAs to Pi start with 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 431/137. For example, if p and q are primes and q > 67, and p/q > Pi, then 211/67 is closer to Pi than p/q is.
-
x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
Numerator[tL] (* A265808 *)
Denominator[tL] (* A265809 *)
Numerator[tU] (* A265810 *)
Denominator[tU] (* A265811 *)
Numerator[y] (* A265812 *)
Denominator[y] (* A265813 *)
A265811
Denominators of upper primes-only best approximates (POBAs) to Pi; see Comments.
Original entry on oeis.org
2, 5, 7, 13, 53, 67, 137, 179, 181, 197, 353, 1723, 3319, 5113, 6469, 9181, 15269, 17981, 22727, 24083, 31541, 34253, 37643, 46457, 64763, 67447, 199403, 531101, 1791689, 5175551, 6369709, 12141887, 12871487, 23089051, 29723689, 36424757, 43324889, 84725681, 105426077, 110667493
Offset: 1
The upper POBAs to Pi start with 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 431/137. For example, if p and q are primes and q > 67, and p/q > Pi, then 211/67 is closer to Pi than p/q is.
-
x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
Numerator[tL] (* A265808 *)
Denominator[tL] (* A265809 *)
Numerator[tU] (* A265810 *)
Denominator[tU] (* A265811 *)
Numerator[y] (* A265812 *)
Denominator[y] (* A265813 *)
A265812
Numerators of primes-only best approximates (POBAs) to Pi; see Comments.
Original entry on oeis.org
5, 7, 17, 23, 41, 167, 211, 223, 619, 757, 977, 1109, 4483, 5237, 5413, 9497, 14423, 16063, 18061, 30841, 45751, 47881, 60661, 137341, 162901, 177811, 211891, 626443, 833719, 38144863, 40436969, 45230587, 93379723, 114431749, 120059441, 185091653, 347672183, 1725229397, 1736068099
Offset: 1
The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is.
-
x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
Numerator[tL] (* A265808 *)
Denominator[tL] (* A265809 *)
Numerator[tU] (* A265810 *)
Denominator[tU] (* A265811 *)
Numerator[y] (* A265812 *)
Denominator[y] (* A265813 *)
A265813
Denominators of primes-only best approximates (POBAs) to Pi; see Comments.
Original entry on oeis.org
2, 2, 5, 7, 13, 53, 67, 71, 197, 241, 311, 353, 1427, 1667, 1723, 3023, 4591, 5113, 5749, 9817, 14563, 15241, 19309, 43717, 51853, 56599, 67447, 199403, 265381, 12141887, 12871487, 14397343, 29723689, 36424757, 38216107, 58916503, 110667493, 549157573, 552607639
Offset: 1
The POBAs to Pi start with 5/2, 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 223/71, 619/197. For example, if p and q are primes and q < 53, then 167/53 is closer to Pi than p/q is.
-
x = Pi; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *)
Numerator[tL] (* A265808 *)
Denominator[tL] (* A265809 *)
Numerator[tU] (* A265810 *)
Denominator[tU] (* A265811 *)
Numerator[y] (* A265812 *)
Denominator[y] (* A265813 *)
A265814
Numerators of lower primes-only best approximates (POBAs) to e; see Comments.
Original entry on oeis.org
5, 13, 19, 307, 443, 617, 2237, 2411, 2971, 5923, 7043, 7603, 11887, 12659, 15361, 24103, 75223, 89021, 128273, 283949, 423299, 1169027, 1587077, 1830211, 3062207, 5080939, 8481901, 9366979, 22675801, 67090433, 71625049, 191016521, 211670869, 221578729, 244402043, 428023867, 1451377009
Offset: 1
The lower POBAs to e; start with 5/2, 13/5, 19/7, 307/113, 443/163, 617/227, 2237/823. For example, if p and q are primes and q > 823, and p/q < e, then 2237/823 is closer to e than p/q is.
-
x = E; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *)
Numerator[tL] (* A265814 *)
Denominator[tL] (* A265815 *)
Numerator[tU] (* A265816 *)
Denominator[tU] (* A265817 *)
Numerator[y] (* A265818 *)
Denominator[y] (* A265819 *)
A265815
Denominators of lower primes-only best approximates (POBAs) to e; see Comments.
Original entry on oeis.org
2, 5, 7, 113, 163, 227, 823, 887, 1093, 2179, 2591, 2797, 4373, 4657, 5651, 8867, 27673, 32749, 47189, 104459, 155723, 430061, 583853, 673297, 1126523, 1869173, 3120317, 3445919, 8341961, 24681191, 26349383, 70271051, 77869361, 81514259, 89910487, 157461181, 533931763, 583892083, 770930497
Offset: 1
The lower POBAs to e; start with 5/2, 13/5, 19/7, 307/113, 443/163, 617/227, 2237/823. For example, if p and q are primes and q > 823, and p/q < e, then 2237/823 is closer to e than p/q is.
-
x = E; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *)
Numerator[tL] (* A265814 *)
Denominator[tL] (* A265815 *)
Numerator[tU] (* A265816 *)
Denominator[tU] (* A265817 *)
Numerator[y] (* A265818 *)
Denominator[y] (* A265819 *)
A265816
Numerators of upper primes-only best approximates (POBAs) to e; see Comments.
Original entry on oeis.org
7, 17, 23, 31, 47, 79, 193, 11251, 15149, 17291, 25261, 46643, 49171, 6105367, 8522909, 8823377, 42983231, 63342553, 97109039, 97947667, 142362299, 292315979, 361821233, 456318767, 677946667, 707276879, 1161377509, 1293881119, 2001108827, 3221097589, 4154291129, 7294989463, 14281444873
Offset: 1
The upper POBAs to e start with 77/2, 17/5, 23/7, 31/11, 47/17, 79/29, 193/71, 11251/4139. For example, if p and q are primes and q > 71, and p/q > e, then 193/71 is closer to e than p/q is.
-
x = E; z = 1000; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265818/A265819 *)
Numerator[tL] (* A265814 *)
Denominator[tL] (* A265815 *)
Numerator[tU] (* A265816 *)
Denominator[tU] (* A265817 *)
Numerator[y] (* A265818 *)
Denominator[y] (* A265819 *)
Comments