cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A296601 L.g.f.: -log(Product_{k>=1} (1 - k*x^k)^k) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 9, 28, 81, 126, 330, 344, 833, 973, 1754, 1332, 5034, 2198, 5658, 8688, 13313, 4914, 28779, 6860, 54106, 45752, 33482, 12168, 254954, 93751, 78906, 255880, 505698, 24390, 1510700, 29792, 1671169, 1791312, 647114, 2819544, 12637371, 50654, 2282346, 14779520, 34058298, 68922, 68084220
Offset: 1

Views

Author

Ilya Gutkovskiy, May 20 2018

Keywords

Examples

			L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 81*x^4/4 + 126*x^5/5 + 330*x^6/6 + 344*x^7/7 + 833*x^8/8 + 973*x^9/9 + ...
exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 42*x^4 + 103*x^5 + 289*x^6 + 690*x^7 + 1771*x^8 + 4206*x^9 + ... + A266941(n)*x^n + ...
		

Crossrefs

Column k=2 of A308502.

Programs

  • Mathematica
    nmax = 42; Rest[CoefficientList[Series[-Log[Product[(1 - k x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]]
    nmax = 42; Rest[CoefficientList[Series[Sum[k^3 x^k/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x]]
    a[n_] := Sum[d^(n/d + 2), {d, Divisors[n]}]; Table[a[n], {n, 1, 42}]
  • PARI
    N=66; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-k*x^k)^k)))) \\ Seiichi Manyama, Jun 02 2019

Formula

G.f.: Sum_{k>=1} k^3*x^k/(1 - k*x^k).
a(n) = Sum_{d|n} d^(n/d+2).
a(p) = p^3 + 1 where p is a prime.
From Seiichi Manyama, Jun 24 2019: (Start)
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>0, by a(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
L.g.f.: -log(Product_{n>0} (1 - g(n)*x^n)^f(n)) = Sum_{n>0} a(n)*x^n/n. (See A266964.)
If we set f(n) = n and g(n) = n, we get this sequence. (End)

A294582 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j)^j.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 9, 14, 13, 1, 1, 17, 36, 42, 24, 1, 1, 33, 98, 148, 103, 48, 1, 1, 65, 276, 546, 489, 289, 86, 1, 1, 129, 794, 2068, 2467, 1959, 690, 160, 1, 1, 257, 2316, 7962, 12969, 14281, 6326, 1771, 282, 1, 1, 513, 6818, 30988, 70243
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2017

Keywords

Examples

			Square array begins:
    1,  1,   1,   1,    1, ...
    1,  1,   1,   1,    1, ...
    3,  5,   9,  17,   33, ...
    6, 14,  36,  98,  276, ...
   13, 42, 148, 546, 2068, ...
		

Crossrefs

Columns k=0..2 give A000219, A266941, A285674.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(2+k*j/d)) * A(n-j,k) for n > 0.

A294589 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j*x^j)^(j^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 6, 1, 1, 9, 14, 14, 1, 1, 17, 36, 42, 25, 1, 1, 33, 98, 140, 103, 56, 1, 1, 65, 276, 498, 481, 289, 97, 1, 1, 129, 794, 1844, 2419, 1774, 690, 198, 1, 1, 257, 2316, 7002, 12745, 12173, 5925, 1771, 354, 1, 1, 513, 6818, 27020, 69283, 89706, 56974, 20076, 4206, 672, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2017

Keywords

Examples

			Square array begins:
    1,  1,   1,   1,    1, ...
    1,  1,   1,   1,    1, ...
    3,  5,   9,  17,   33, ...
    6, 14,  36,  98,  276, ...
   14, 42, 140, 498, 1844, ...
		

Crossrefs

Columns k=0..3 give A006906, A266941, A285241, A294590.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+j/d)) * A(n-j,k) for n > 0.

A318483 Expansion of Product_{k>=1} 1/(1 - k*x^k)^sigma(k), where sigma = A000203.

Original entry on oeis.org

1, 1, 7, 19, 71, 173, 583, 1443, 4255, 10648, 28929, 71159, 184740, 445626, 1110122, 2638328, 6369490, 14870194, 35031627, 80465028, 185556696, 419916149, 950785580, 2121471778, 4727971847, 10412230698, 22876886529, 49776871862, 107974178843, 232302695301
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^DivisorSigma[1, k], {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[DivisorSigma[1, k], j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x]

Formula

a(n) ~ c * n^3 * 3^(n/3), where
c = 280631952508395331283883354935233682635.581151020... if mod(n,3)=0
c = 280631952508395331283883354935233682635.059082354... if mod(n,3)=1
c = 280631952508395331283883354935233682635.088610121... if mod(n,3)=2
In closed form, c = (Product_{k>=4}((1 - k/3^(k/3))^(-sigma(k)))/(18*(57 - 90*3^(1/3) + 35*3^(2/3)))) - Product_{k>=4}((1 + ((-1)^(1 + 2*k/3)*k)/3^(k/3))^(-sigma(k)))/ ((-1)^(2*n/3)*(6*(3 + 2*(-3)^(1/3))^3*(-3 + (-3)^(2/3)))) - ((-1)^(1 - (4*n)/3)*Product_{k>=4}((1 + ((-1)^(1 + 4*k/3)*k)/3^(k/3))^(-sigma(k))))/(486*(1 + (-1/3)^(1/3))* (1 - 2*(-1/3)^(2/3))^3)
Previous Showing 11-14 of 14 results.