cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 140 results. Next

A367695 Numbers k such that k and k+1 are both exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 5, 6, 7, 10, 13, 14, 21, 22, 23, 26, 29, 30, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 46, 53, 54, 55, 56, 57, 58, 61, 65, 66, 69, 70, 73, 77, 78, 82, 85, 86, 87, 88, 93, 94, 95, 96, 101, 102, 103, 104, 105, 106, 109, 110, 113, 114, 118, 119, 122, 127, 128
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 48, 478, 4734, 47195, 471707, 4716892, 47168363, 471681183, 4716806520, ... . Apparently, the asymptotic density of this sequence exists and equals Product_{p prime} (1 - 2/(p*(p+1))) = 0.47168... (A307868).

Crossrefs

Subsequence of A268335.
Cf. A307868.
Subsequences: A007674, A325058.
Similar sequences: A071318, A121495, A340152, A367696.

Programs

  • Mathematica
    expOddQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], OddQ]; Select[Range[128], And @@ expOddQ /@ {#, # + 1} &]
  • PARI
    isexpodd(n) = {my(f = factor(n)); for(i=1, #f~, if (!(f[i, 2] % 2), return (0))); 1;}
    is(n) = isexpodd(n) && isexpodd(n+1)

A368977 The number of bi-unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 3, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 6, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 3, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 6, 3, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e+3)/2, 2*Floor[e/4]+1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, (x+3)/2, 2*(x\4)+1), factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + X - X^2 + 2*X^3 - X^4)/(1 - X - X^4 + X^5))[n], ", ")) \\ Vaclav Kotesovec, Jan 11 2024

Formula

Multiplicative with a(p^e) = (e+3)/2 if e is odd, and 2*floor(e/4)+1 if e is even.
a(n) >= 1, with equality if and only if n is in A062503.
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
From Vaclav Kotesovec, Jan 11 2024: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Let f(s) = Product_{p prime} (1 - (1 - p^s + 2*p^(2*s)) / (p^s*(1 + p^s)*(1 + p^(2*s)))).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (1 - p + 2*p^2) / (p*(1 + p)*(1 + p^2))) = 0.5715031234451924252215041182933420817059774181158824297150124265420835...,
f'(1) = f(1) * Sum_{p prime} (4*p^5 - p^4 + 2*p^3 + 2*p + 1) * log(p) / (p^7 + 2*p^6 + p^5 + 3*p^4 + p^3 + p - 1) = f(1) * 1.1422556395248477875508983912036578244050011522937179465478688905880430...
and gamma is the Euler-Mascheroni constant A001620. (End)

A374460 Indices of the nonsquarefree terms in the sequence of exponentially odd numbers (A268335).

Original entry on oeis.org

7, 18, 20, 24, 31, 39, 41, 63, 69, 74, 86, 89, 91, 97, 98, 109, 115, 121, 131, 135, 154, 161, 167, 174, 177, 179, 189, 194, 200, 211, 212, 223, 234, 243, 244, 249, 250, 265, 266, 268, 273, 290, 296, 302, 314, 325, 328, 338, 343, 348, 350, 366, 367, 373, 382, 388, 393
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Comments

The asymptotic density of this sequence is 1 - A059956 / A065463 = 0.13700925215474602945... .

Examples

			The first 7 exponentially odd numbers are 1, 2, 3, 5, 6, 7, and 8. A268335(7) = 8 = 3^3 is the least nonsquarefree term. Therefore a(1) = 7.
		

Crossrefs

Similar sequences: A361936, A363189, A371186, A371188.

Programs

  • Mathematica
    Position[Select[Range[120], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &], _?(!SquareFreeQ[#] &), Heads -> False] // Flatten
  • PARI
    isexpodd(k) = {my(e = factor(k)[, 2]); for(i = 1, #e, if(!(e[i] % 2), return(0))); 1;}
    lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(isexpodd(k), c++; if(!issquarefree(k), print1(c, ", "))));}

Formula

A268335(a(n)) = A374459(n).

A384559 The sum of the exponential unitary (or e-unitary) divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 10, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 30, 5, 26, 30, 14, 29, 30, 31, 34, 33, 34, 35, 6, 37, 38, 39, 50, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 60, 55, 70, 57, 58, 59, 30, 61, 62, 21, 10, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2025

Keywords

Comments

First differs from A384558 at n = 512: a(512) = 514, while A384558(512) = 522.
The number of these divisors is A384557(n), and the largest of them is A331737(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := DivisorSum[e, p^# &, OddQ[#] && CoprimeQ[#, e/#] &]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, sumdiv(f[i,2], d, (d % 2) * (gcd(d, f[i,2]/d) == 1) * f[i,1]^d));}

Formula

Multiplicative with a(p^e) = Sum_{d|e, d odd, gcd(d, e/d) = 1} p^d.
a(n) = n if and only if n is squarefree (A005117).
a(n) < n if and only if n is in A072587.
a(n) > n if and only if n is in A374459.

A334899 Bi-unitary practical numbers (A334898) that are not exponentially odd numbers (A268335).

Original entry on oeis.org

48, 72, 192, 240, 288, 320, 336, 360, 432, 448, 504, 528, 600, 624, 648, 768, 792, 800, 810, 816, 912, 936, 960, 1050, 1104, 1134, 1152, 1176, 1200, 1224, 1280, 1296, 1344, 1350, 1368, 1392, 1400, 1440, 1470, 1488, 1568, 1650, 1656, 1680, 1728, 1776, 1782, 1792
Offset: 1

Views

Author

Amiram Eldar, May 16 2020

Keywords

Comments

Practical numbers (A005153) that are exponentially odd (A268335) are also bi-unitary practical numbers (A334898), since all of their divisors are bi-unitary.
Of the first 2500 bi-unitary practical numbers, only 847 are in this sequence.

Crossrefs

Programs

  • Mathematica
    biunitaryDivisorQ[div_, n_] := If[Mod[#2, #1] == 0, Last @ Apply[Intersection, Map[Select[Divisors[#], Function[d, CoprimeQ[d, #/d]]] &, {#1, #2/#1}]] == 1, False] & @@ {div, n}; bdivs[n_] := Module[{d = Divisors[n]}, Select[d, biunitaryDivisorQ[#, n] &]]; bPracQ[n_] := Module[{d = bdivs[n], sd, x}, sd = Plus @@ d; Min @ CoefficientList[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, sd}], x] >  0]; expOddQ[n_] := AllTrue[Last /@ FactorInteger[n], OddQ]; Select[Range[1000], !expOddQ[#] && bPracQ[#] &]

A335938 Bi-unitary pseudoperfect numbers (A292985) that are not exponentially odd numbers (A268335).

Original entry on oeis.org

48, 60, 72, 80, 90, 150, 162, 192, 240, 288, 294, 320, 336, 360, 420, 432, 448, 504, 528, 540, 560, 576, 600, 624, 630, 648, 660, 704, 720, 726, 756, 768, 780, 792, 800, 810, 816, 832, 880, 912, 924, 936, 960, 990, 1008, 1014, 1020, 1040, 1050, 1092, 1104, 1134
Offset: 1

Views

Author

Amiram Eldar, Jun 30 2020

Keywords

Comments

Pseudoperfect numbers (A005835) that are exponentially odd (A268335) are also bi-unitary pseudoperfect numbers (A292985), since all of their divisors are bi-unitary.
First differs from A335216 at n = 28.

Examples

			48 is a term since it is not exponentially odd number (48 = 2^4 * 3 and 4 is even), so not all of its divisors are bi-unitary, and it is the sum of a subset of its bi-unitary divisors: 8 + 16 + 24 = 48.
		

Crossrefs

Subsequence of A005835 and A292985.

Programs

  • Mathematica
    f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bdiv[m_] := Select[Divisors[m], Last@Intersection[f@#, f[m/#]] == 1 &]; bPspQ[n_] := Module[{d = Most @ bdiv[n], x}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0]; expOddQ[n_] := AllTrue[Last /@ FactorInteger[n], OddQ]; Select[Range[1000], ! expOddQ[#] && bPspQ[#] &]

A335989 Terms of A301517 that are not exponentially odd numbers (A268335).

Original entry on oeis.org

12500, 18252, 21600, 37500, 50000, 67228, 84500, 87500, 91260, 127764, 137500, 146016, 150000, 151200, 162500, 200000, 200772, 201684, 212500, 231868, 237500, 237600, 253500, 262500, 268912, 274400, 280800, 287500, 310284, 336140, 337500, 346788, 350000, 362500
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2020

Keywords

Comments

If k = Product p^e, then A162296(k) / A048250(k) = -1 + Product (p^(e+1) - 1)/(p^2 - 1). If k is exponentially odd, then e = 2*m - 1 is odd for all the prime factors p of k and p^(e+1) - 1 = (p^2)^m - 1 is divisible by p^2 - 1. Therefore, A162296(k) / A048250(k) is an integer for all exponentially odd numbers, and it is a positive integer for all the nonsquarefree (A013929) exponentially odd numbers.
It seems that most of the terms of A301517 are exponentially odd numbers. For example, the first 10^4 terms of A301517 include only 9 terms that are not exponentially odd numbers. Up to 10^8 there are 9660732 terms of A301517, and only 9107 of them are not exponentially odd numbers.
The number of terms of this sequence that do not exceed 10^k, for k = 5, 6, ... are 9, 92, 916, 9107, 91172, 911187, .... Apparently, this sequence has an asymptotic density c = 0.000091... If this is true, then the asymptotic density of A301517 is c + A065463 - A059956 = 0.096606... (A065463 is the density of the exponentially odd numbers, and A059956 is the density of the squarefree numbers which are a subset of the exponentially odd numbers).

Examples

			12500 = 2^2 * 5^5 is a term since the exponent of its prime factor 2 is 2 which even, and therefore it is not an exponentially odd number, and the sum of its squarefree divisors, A048250(12500) = 18 divides the sum of its nonsquarefree divisors, A162296(12500) = 27324 = 18 * 1518.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p^2 - 1); Select[Range[2, 4*10^5], Max[Last /@ (fct = FactorInteger[#])] > 1 && ! AllTrue[Last /@ fct, OddQ] && (r =  Times @@ (f @@@ fct)) > 1 && IntegerQ[r] &]

A368470 a(n) is the number of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 3)/2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,2]+3)/2, 1));}

Formula

a(n) = A033634(A350389(n)).
Multiplicative with a(p^e) = (e+3)/2 if e is odd and 1 otherwise.
a(n) >= 1, with equality if and only if n is a square (A000290).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s) - 1/p^(3*s)).
From Vaclav Kotesovec, Dec 26 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).
Let f(s) = Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (2*p+1) / (p*(p+1)^2)) = 0.528940778823659679133966695786017426052491935740673837882972347697...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 + 3*p + 1) * log(p) / (p^4 + 3*p^3 + p^2 - 2*p - 1) = f(1) * 1.36109933267802415215189866467122940932493907539386280428818...
and gamma is the Euler-Mascheroni constant A001620. (End)

A368471 a(n) is the sum of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 11, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 44, 1, 42, 31, 8, 30, 72, 32, 43, 48, 54, 48, 1, 38, 60, 56, 66, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 93, 72, 88, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1 + (p^(e + 2) - p)/(p^2 - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,1]^(f[i,2]+2) - f[i,1])/(f[i,1]^2 - 1) + 1, 1));}

Formula

a(n) = A033634(A350389(n)).
Multiplicative with a(p^e) = (p^(e+2) - p)/(p^2 - 1) + 1 if e is odd and 1 otherwise.
a(n) >= 1, with equality if and only if n is a square (A000290).
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^6/1080) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.51287686448947428073... .

A374457 The Dedekind psi function values of the exponentially odd numbers (A268335).

Original entry on oeis.org

1, 3, 4, 6, 12, 8, 12, 18, 12, 14, 24, 24, 18, 20, 32, 36, 24, 48, 42, 36, 30, 72, 32, 48, 48, 54, 48, 38, 60, 56, 72, 42, 96, 44, 72, 48, 72, 54, 108, 72, 96, 80, 90, 60, 62, 96, 84, 144, 68, 96, 144, 72, 74, 114, 96, 168, 80, 126, 84, 108, 132, 120, 144, 90
Offset: 1

Views

Author

Amiram Eldar, Jul 09 2024

Keywords

Crossrefs

Similar sequences related to psi: A000082, A033196, A323332, A371413, A371415.
Similar sequences related to exponentially odd numbers: A366438, A366439, A366534, A366535, A367417, A368711, A374456.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p+1) * p^(e-1), 0]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]+1) * f[i, 1]^(f[i, 2] - 1), 0));}
    lista(kmax) = {my(s1); for(k = 1, kmax, s1 = s(k); if(s1 > 0, print1(s1, ", ")));}

Formula

a(n) = A001615(A268335(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 / A065463^2 = 2.01515877170903249510... .
Previous Showing 21-30 of 140 results. Next