cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 71 results. Next

A274786 Diagonal of the rational function 1/(1 - (wxz + wy + wz + xy + xz + y + z)).

Original entry on oeis.org

1, 6, 114, 2940, 87570, 2835756, 96982116, 3446781624, 126047377170, 4712189770860, 179275447715364, 6918537571788024, 270178056420497316, 10656693484898995800, 423937118582497715400, 16989669600664370275440, 685277433339552643145490, 27797911234749454227812460, 1133299570662800455270517700
Offset: 0

Views

Author

Gheorghe Coserea, Jul 14 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^j Binomial[2n, j] Binomial[j, n]^3, {j, n, 2n}];
    (* or much faster *)
    a[0] = 1; a[1] = 6; a[n_] := a[n] = (2*(2*n - 1)*(11*n^2 - 11*n + 3)*a[n - 1] + 4*(n - 1)*(2*n - 3)*(2*n - 1)*a[n - 2])/n^3;
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 01 2017, after Vaclav Kotesovec *)
  • PARI
    a(n) = sum(j=n, 2*n, (-1)^(j)*binomial(2*n, 2*n - j)*binomial(j, n)^3);
    
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1-(w*x*z+w*y+w*z+x*y+x*z+y+z));
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(18, R, [x,y,z,w])

Formula

a(n) = Sum_{j=0..2*n} (-1)^j * binomial(2*n,j) * binomial(j,n)^3.
a(n) = T(2*n,n), where triangle T(n,k) is defined by A262704.
0 = (-x^2+44*x^3+16*x^4)*y''' + (-3*x+198*x^2+96*x^3)*y'' + (-1+144*x+108*x^2)*y' + (6+12*x)*y, where y is the g.f.
Recurrence: n^3*a(n) = 2*(2*n - 1)*(11*n^2 - 11*n + 3)*a(n-1) + 4*(n-1)*(2*n - 3)*(2*n - 1)*a(n-2). - Vaclav Kotesovec, Dec 01 2017
a(n) ~ 2^(2*n - 1) * phi^(5*n + 5/2) / (5^(1/4) * (Pi*n)^(3/2)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Dec 01 2017
Conjecture: a(n) = [x^n] (1 + x)^(2*n) * P(n,(1 + x)/(1 - x))^2, where P(n,x) denotes the n-th Legendre polynomial. Cf. A005260(n) = [x^n] (1 - x)^(2*n) * P(n,(1 + x)/(1 - x))^2, due to Carlitz. - Peter Bala, Sep 21 2021
a(n) = A000984(n) * A005258(n). - Peter Bala, Oct 12 2024

A275046 Number of binary strings with n zeros and n ones avoiding the substrings 10101101 and 1110101.

Original entry on oeis.org

1, 2, 6, 20, 70, 245, 874, 3164, 11577, 42694, 158431, 590873, 2212797, 8315535, 31341163, 118423810, 448455754, 1701534151, 6467049185, 24617030774, 93834205107, 358116770601, 1368283768753, 5233261657558, 20034371696497, 76763164565117, 294357181436313, 1129575035419485
Offset: 0

Views

Author

Gheorghe Coserea, Jul 17 2016

Keywords

Comments

Numerical experiment gives a(n) ~ k * r^n/sqrt(n*Pi) * (1 + O(1/n)), where k=1.06869393488382855... and r=3.91019320429177568...(the largest positive real root of P(x) = 4*x^20 - 20*x^19 + 8*x^18 + 75*x^17 - 233*x^16 + 368*x^15 - 286*x^14 + 154*x^13 + 66*x^12 - 203*x^11 + x^10 - 56*x^9 - 182*x^8 - 11*x^7 - 43*x^6 + 26*x^5 + 62*x^4 + 63*x^3 + 23*x^2 - 8*x - 4). - Gheorghe Coserea, Jun 28 2018

Examples

			For n = 5 there are binomial(10,5) = 252 binary strings with 5 zeros and 5 ones; seven out of this 252 binary strings contain as substrings w1=10101101 or w2=1110101, i.e.
   0123456789
   ----------
1  0001110101 contains w2 at offset 3
2  0010101101 contains w1 at offset 2
3  0011101010 contains w2 at offset 2
4  0101011010 contains w1 at offset 1
5  0111010100 contains w2 at offset 1
6  1010110100 contains w1 at offset 0
7  1110101000 contains w2 at offset 0
Therefore a(5) = 252 - 7 = 245.
		

Crossrefs

Main diagonal of A273914.

Programs

  • Mathematica
    a[n_] := SeriesCoefficient[(1 + x^2 y^3 + x^2 y^4 + x^3 y^4 - x^3 y^6) / (1 - x - y + x^2 y^3 - x^3 y^3 - x^4 y^4 - x^3 y^6 + x^4 y^6), {x, 0, n}, {y, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 20 2018 *)
  • PARI
    r1 = (1+x^2*y^3+x^2*y^4+x^3*y^4-x^3*y^6);
    r2 = (1-x-y+x^2*y^3-x^3*y^3-x^4*y^4-x^3*y^6+x^4*y^6);
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(r1/r2, 28)
    F  = (x + 1)*(4*x^20 + 8*x^19 - 23*x^18 - 63*x^17 - 62*x^16 - 26*x^15 + 43*x^14 + 11*x^13 + 182*x^12 + 56*x^11 - x^10 + 203*x^9 - 66*x^8 - 154*x^7 + 286*x^6 - 368*x^5 + 233*x^4 - 75*x^3 - 8*x^2 + 20*x - 4)*(y^4 - y^3)  - (12*x^17 + 48*x^16 + 72*x^15 + 49*x^14 - 23*x^13 - 57*x^12 - 91*x^11 - 137*x^10 - 84*x^9 - 34*x^8 - 91*x^7 + 62*x^6 + 24*x^5 - 34*x^4 + 41*x^3 - 10*x^2 - 3*x - 3)*y^2 + (x^15 + 4*x^14 + 6*x^13 + 3*x^12 - 6*x^11 - 11*x^10 - 11*x^9 - 8*x^8 - 3*x^7 + 12*x^6 + 11*x^4 + 5*x^3 - 6*x^2 - 4)*y - x^4 + x + 1;
    \\ test: y = Ser(diag(r1/r2, 100)); 0 == subst(F, 'y, y)
    
  • PARI
    x='x; y='y; t='t;
    seq(N) = {
      my(Fx = substvec(F, [x, y], [t, x]), y0 = 1 + O('t^N), y1=0, n=1);
      while (n++,
        y1 = y0 - subst(Fx, 'x, y0)/subst(deriv(Fx, 'x), 'x, y0);
        if (y1 == y0, break()); y0 = y1); Vec(y0);
    };
    seq(28)
    \\ Gheorghe Coserea, Jul 18 2018

Formula

a(n) = [x^n y^n] (1+x^2*y^3+x^2*y^4+x^3*y^4-x^3*y^6) / (1-x-y+x^2*y^3 -x^3*y^3-x^4*y^4-x^3*y^6+x^4*y^6).
From Gheorghe Coserea, Jul 17 2018: (Start)
G.f. y=A(x) satisfies:
0 = (x + 1)*(4*x^20 + 8*x^19 - 23*x^18 - 63*x^17 - 62*x^16 - 26*x^15 + 43*x^14 + 11*x^13 + 182*x^12 + 56*x^11 - x^10 + 203*x^9 - 66*x^8 - 154*x^7 + 286*x^6 - 368*x^5 + 233*x^4 - 75*x^3 - 8*x^2 + 20*x - 4)*(y^4 - y^3) - (12*x^17 + 48*x^16 + 72*x^15 + 49*x^14 - 23*x^13 - 57*x^12 - 91*x^11 - 137*x^10 - 84*x^9 - 34*x^8 - 91*x^7 + 62*x^6 + 24*x^5 - 34*x^4 + 41*x^3 - 10*x^2 - 3*x - 3)*y^2 + (x^15 + 4*x^14 + 6*x^13 + 3*x^12 - 6*x^11 - 11*x^10 - 11*x^9 - 8*x^8 - 3*x^7 + 12*x^6 + 11*x^4 + 5*x^3 - 6*x^2 - 4)*y - x^4 + x + 1.
0 = x*(x + 1)*(4*x^20 + 8*x^19 - 23*x^18 - 63*x^17 - 62*x^16 - 26*x^15 + 43*x^14 + 11*x^13 + 182*x^12 + 56*x^11 - x^10 + 203*x^9 - 66*x^8 - 154*x^7 + 286*x^6 - 368*x^5 + 233*x^4 - 75*x^3 - 8*x^2 + 20*x - 4)*(118272*x^52 + 831744*x^51 + 1055904*x^50 - 7689296*x^49 - 38498448*x^48 - 80707744*x^47 - 72043786*x^46 + 66740441*x^45 + 346144275*x^44 + 625268594*x^43 + 589350508*x^42 + 17945175*x^41 - 884101205*x^40 - 1544594497*x^39 - 1347124444*x^38 - 211988089*x^37 + 1025901619*x^36 + 1241901364*x^35 + 616097420*x^34 - 78145486*x^33 - 99242286*x^32 + 531374412*x^31 + 906579073*x^30 + 469457541*x^29 - 557671181*x^28 - 782936093*x^27 - 717539334*x^26 - 40136982*x^25 + 457839043*x^24 - 311428424*x^23 + 3826606*x^22 - 491844856*x^21 - 133463183*x^20 - 60176593*x^19 + 144471284*x^18 - 190012265*x^17 + 85787300*x^16 - 80535081*x^15 + 8793691*x^14 + 10578217*x^13 - 9656310*x^12 + 18022318*x^11 - 26135422*x^10 + 12930260*x^9 - 3354132*x^8 + 541884*x^7 - 9616*x^6 - 57280*x^5 - 9208*x^4 + 9112*x^3 - 1040*x^2 - 280*x + 16)*y'''' + 4*(2838528*x^73 + 28067328*x^72 + 73561152*x^71 - 226808640*x^70 - 1991541264*x^69 - 5248168208*x^68 - 3107619252*x^67 + 20424566388*x^66 + 73353344501*x^65 + 120803944377*x^64 + 68101961985*x^63 - 186797665046*x^62 - 613175796828*x^61 - 923231475195*x^60 - 665765362797*x^59 + 399661471464*x^58 + 1879241350220*x^57 + 2725977199294*x^56 + 1953611739558*x^55 - 308344618572*x^54 - 2604282130026*x^53 - 3293902915065*x^52 - 2023915430978*x^51 - 99057127476*x^50 + 858463211952*x^49 + 317189348208*x^48 - 644601194734*x^47 - 507510602088*x^46 + 879140815897*x^45 + 2316302607265*x^44 + 2466044252703*x^43 + 1507845363339*x^42 - 37352834097*x^41 - 866197857474*x^40 - 550136559577*x^39 - 371957632883*x^38 + 280554188916*x^37 - 169839318847*x^36 - 548085762481*x^35 - 394885238292*x^34 - 961508690348*x^33 - 558871954052*x^32 - 268597349319*x^31 - 396264718574*x^30 - 54570409485*x^29 - 29474141703*x^28 + 54798043451*x^27 - 225168685420*x^26 + 219869326332*x^25 - 211388212265*x^24 + 121755651738*x^23 - 44532380475*x^22 + 41810572525*x^21 - 13020873945*x^20 - 34502727399*x^19 + 51399098138*x^18 - 37480914194*x^17 + 16266551868*x^16 + 4802405683*x^15 - 11015782402*x^14 + 6973213149*x^13 - 2867107486*x^12 + 1145934309*x^11 - 396485541*x^10 + 91079094*x^9 - 20790910*x^8 + 9018972*x^7 - 2729266*x^6 + 15970*x^5 + 152280*x^4 - 23540*x^3 - 4624*x^2 + 804*x - 40)*y''' + 12*(5913600*x^72 + 58552320*x^71 + 162198720*x^70 - 399479776*x^69 - 4024065824*x^68 - 11894928752*x^67 - 13359252044*x^66 + 19743062838*x^65 + 106170302098*x^64 + 196850199947*x^63 + 139990047211*x^62 - 242428556815*x^61 - 914440223127*x^60 - 1404267023705*x^59 - 981820207169*x^58 + 692860011210*x^57 + 2881981766799*x^56 + 3780666319153*x^55 + 1931509675560*x^54 - 1789113064830*x^53 - 4353254267040*x^52 - 3421680202122*x^51 + 86944304476*x^50 + 2529905700017*x^49 + 1255075892612*x^48 - 2347804140484*x^47 - 4006195397861*x^46 - 1459374421865*x^45 + 3708726044890*x^44 + 6578458317742*x^43 + 3981711739329*x^42 - 545975266760*x^41 - 3735058603101*x^40 - 2830413868772*x^39 + 496621169935*x^38 + 2215361366242*x^37 + 2664777396382*x^36 - 126126929968*x^35 - 1185628295801*x^34 - 1766130985147*x^33 - 1321402227308*x^32 - 554605775048*x^31 - 314472036802*x^30 - 124742883035*x^29 - 779639894108*x^28 - 187973020632*x^27 - 436320637251*x^26 - 110965040480*x^25 + 89434870246*x^24 - 59962248938*x^23 + 40664295470*x^22 - 159086840234*x^21 + 87274292183*x^20 - 64615348620*x^19 - 3906157152*x^18 + 42872210460*x^17 - 39037582211*x^16 + 17857634133*x^15 - 4859881314*x^14 + 1719235532*x^13 - 1220377579*x^12 + 826395920*x^11 - 452538461*x^10 + 276451285*x^9 - 77896966*x^8 - 7819744*x^7 + 11091416*x^6 - 2392952*x^5 + 84092*x^4 + 78168*x^3 - 13628*x^2 + 204*x - 40)*y'' + 24*(4730880*x^71 + 47278080*x^70 + 138487680*x^69 - 273327872*x^68 - 3224196672*x^67 - 10522840368*x^66 - 15683954824*x^65 + 2837440368*x^64 + 66783160692*x^63 + 157076042559*x^62 + 176460709731*x^61 - 20753120619*x^60 - 468777180135*x^59 - 901436210799*x^58 - 814713584628*x^57 + 118253282806*x^56 + 1519823466913*x^55 + 2171886524422*x^54 + 984539467703*x^53 - 1380275010648*x^52 - 2578554053427*x^51 - 1051193690751*x^50 + 1862189159015*x^49 + 2884190942011*x^48 + 178354766658*x^47 - 3671225244807*x^46 - 4179646483007*x^45 - 425026505279*x^44 + 4749349227024*x^43 + 5804031914804*x^42 + 1249983354384*x^41 - 3642913361190*x^40 - 5112487295002*x^39 - 1641304278133*x^38 + 2938886288909*x^37 + 4069038198838*x^36 + 1830779914789*x^35 - 1798238310417*x^34 - 1495907299753*x^33 - 1094364204315*x^32 + 807417393365*x^31 - 72154916922*x^30 - 8536980308*x^29 - 794452219816*x^28 - 509673251372*x^27 + 190937602442*x^26 - 234838593532*x^25 + 251283672141*x^24 - 379193047029*x^23 + 161017205569*x^22 - 113347214785*x^21 + 45981090690*x^20 - 22904707029*x^19 - 8687260383*x^18 - 31879707878*x^17 + 37099647203*x^16 - 21102826093*x^15 + 7822806180*x^14 - 6568577261*x^13 + 4330232930*x^12 - 2387982620*x^11 + 1109490464*x^10 - 512581326*x^9 + 162799386*x^8 - 23098368*x^7 - 6139110*x^6 + 3208022*x^5 - 413396*x^4 - 87740*x^3 + 17676*x^2 - 2732*x + 520)*y'.
(End)

A268542 The diagonal of the rational function 1/(1 - x - y - x y - x z - y z).

Original entry on oeis.org

1, 4, 42, 520, 7090, 102144, 1525776, 23380368, 365130810, 5786380600, 92774019052, 1501646797248, 24498046138384, 402329384914240, 6645072333486720, 110293868867458080, 1838511122725436250, 30762545845461663240
Offset: 0

Views

Author

N. J. A. Sloane, Feb 29 2016

Keywords

Crossrefs

Programs

  • Maple
    A268542 := proc(n)
        1/(1-x-y-x*y-x*z-y*z) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,n) ;
        coeftayl(%,z=0,n) ;
    end proc:
    seq(A268542(n),n=0..40) ; # R. J. Mathar, Mar 11 2016
  • Mathematica
    gf = Hypergeometric2F1[1/12, 5/12, 1, 1728*x^4*(x + 1)^2*(27*x^2 + 34*x - 2)/(-1 + 16*x + 8*x^2)^3]/(1 - 16*x - 8*x^2)^(1/4);
    CoefficientList[gf + O[x]^18, x] (* Jean-François Alcover, Dec 02 2017, after Gheorghe Coserea *)
  • PARI
    my(x='x, y='y, z='z);
    R = 1/(1 - x - y - x*y - x*z - y*z);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x, y, z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 20; x = 'x + O('x^N);
    Vec(hypergeom_sym([1/12, 5/12], [1], 1728*x^4*(x+1)^2*(27*x^2+34*x-2)/(-1+16*x+8*x^2)^3, N)/(1-16*x-8*x^2)^(1/4))  \\ Gheorghe Coserea, Jul 06 2016

Formula

Conjecture: 2*n^2*(21*n-37)*a(n) -32*(7*n-3)*(3*n^2-7*n+3)*a(n-1) +(-1281*n^3+4819*n^2-5610*n+1920)*a(n-2) -3*(3*n-5)*(21*n-16)*(3*n-7)*a(n-3) = 0. - R. J. Mathar, Mar 11 2016
G.f.: hypergeom([1/12, 5/12], [1], 1728*x^4*(x+1)^2*(27*x^2+34*x-2)/(-1+16*x+8*x^2)^3)/(1-16*x-8*x^2)^(1/4). - Gheorghe Coserea, Jul 06 2016
0 = x*(x+4)*(x+1)*(27*x^2+34*x-2)*y'' + (81*x^4+554*x^3+764*x^2+256*x-8)*y' + (24*x^3+184*x^2+192*x+32)*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016
a(n) ~ sqrt(5/12 + 4/(3*sqrt(7))) * ((17+7*sqrt(7))/2)^n / (Pi*n). - Vaclav Kotesovec, Jul 07 2016

A268543 The diagonal of 1/(1 - (y + z + x z + x w + x y w)).

Original entry on oeis.org

1, 8, 156, 3800, 102340, 2919168, 86427264, 2626557648, 81380484900, 2559296511200, 81443222791216, 2616761264496288, 84749038859067856, 2763262653898544000, 90615128199047200800, 2986287891921565639200, 98841887070519004625700
Offset: 0

Views

Author

N. J. A. Sloane, Feb 29 2016

Keywords

Comments

From Gheorghe Coserea, Jul 03 2016: (Start)
Also diagonal of rational function R(x,y,z) = 1/(1 - x - y - z - x*y).
Annihilating differential operator: x*(2*x+3)*(16*x^2-71*x+2)*Dx^2 + 2*(32*x^3+x^2-213*x+3)*Dx + 8*x^2+48*x-48.
(End)

Crossrefs

Programs

  • Maple
    A268543 := proc(n)
        1/(1-y-z-x*z-x*w-x*y*w) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,n) ;
        coeftayl(%,z=0,n) ;
        coeftayl(%,w=0,n) ;
    end proc:
    seq(A268543(n),n=0..40) ; # R. J. Mathar, Mar 11 2016
    #alternative program
    with(combinat):
    seq(binomial(2*n,n)*add(binomial(n,k)*binomial(2*n+k,k), k = 0..n), n = 0..20); # Peter Bala, Jan 27 2018
  • Mathematica
    CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12}, {1}, 1728*x^3*(2 - 71*x + 16*x^2)/(1 - 32*x + 16*x^2)^3]*(1 - 32*x + 16*x^2)^(-1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1 - x - y - z - x*y);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x,y,z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 20; x = 'x + O('x^N);
    Vec(hypergeom_sym([1/12,5/12],[1],1728*x^3*(16*x^2-71*x+2)/(16*x^2-32*x+1)^3, N)/(16*x^2-32*x+1)^(1/4))  \\ Gheorghe Coserea, Jul 03 2016

Formula

Conjecture: 2*n^2*(17*n-23)*a(n) +(-1207*n^3+2840*n^2-1897*n+360)*a(n-1) + 4*(17*n-6)*(-3+2*n)^2*a(n-2) = 0. - R. J. Mathar, Mar 11 2016
G.f.: hypergeom([1/12, 5/12], [1], 1728*x^3*(2-71*x+16*x^2)/(1-32*x+16*x^2)^3)*(1-32*x+16*x^2)^(-1/4). - Gheorghe Coserea, Jul 01 2016
0 = x*(2*x+3)*(16*x^2-71*x+2)*y'' + 2*(32*x^3+x^2-213*x+3)*y' + (8*x^2+48*x-48)*y, where y is the g.f. - Gheorghe Coserea, Jul 03 2016
a(n) ~ sqrt(3 + 13/sqrt(17)) * (71+17*sqrt(17))^n / (Pi * n * 2^(2*n + 3/2)). - Vaclav Kotesovec, Jul 05 2016
From Peter Bala, Jan 27 2018: (Start)
a(n) = binomial(2*n,n)*Sum_{k = 0..n} binomial(n,k)* binomial(2*n+k,k) (apply Eger, Theorem 3 to the set of column vectors S = {[1,0,0], [0,1,0], [0,0,1], [1,1,0]}). Using this binomial sum, Maple confirms the above recurrence of Mathar.
a(n) = A000984(n)*A114496(n). (End)

A268551 Diagonal of 1/(1 - x + y + z + x y + x z - y z + x y z).

Original entry on oeis.org

1, 11, 325, 11711, 465601, 19590491, 855266581, 38319499775, 1750193256961, 81131090245931, 3805404745303525, 180207832513958975, 8601942203526345025, 413358969518738106875, 19977566733574388828725, 970297391859524593324031, 47330511448436249282088961
Offset: 0

Views

Author

N. J. A. Sloane, Feb 29 2016

Keywords

Crossrefs

Programs

  • Maple
    A268551 := proc(n)
        1/(1-x+y+z+x*y+x*z-y*z+x*y*z) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,n) ;
        coeftayl(%,z=0,n) ;
    end proc:
    seq(A268551(n),n=0..40) ; # R. J. Mathar, Mar 10 2016
  • Mathematica
    gf = Hypergeometric2F1[1/12, 5/12, 1, 13824*x^3*(x^2 - 52*x + 1)/(x^2 - 46*x + 1)^3/(x + 1)^2]/((x^2 - 46*x + 1)*(x + 1)^2)^(1/4);
    CoefficientList[gf + O[x]^40, x] (* Jean-François Alcover, Dec 03 2017, after Gheorghe Coserea *)
  • PARI
    my(x='x, y='y, z='z);
    R = 1/(1 - x + y + z + x*y + x*z - y*z + x*y*z);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x, y, z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 20; x = 'x + O('x^N);
    Vec(hypergeom([1/12, 5/12],[1],13824*x^3*(x^2-52*x+1)/(x^2-46*x+1)^3/(x+1)^2, N)/((x^2-46*x+1)*(x+1)^2)^(1/4)) \\ Gheorghe Coserea, Jul 06 2016

Formula

Conjecture: n^2*(n-2)*a(n) +(-50*n^3+149*n^2-109*n+21)*a(n-1) -(2*n-3) *(51*n^2-153*n+91)*a(n-2) +(-50*n^3+301*n^2-565*n+315)*a(n-3) +(n-1)*(n-3)^2*a(n-4)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ (1+sqrt(3))^(6*n+3) / (3*Pi*n*2^(3*n+3)). - Vaclav Kotesovec, Jul 01 2016
From Gheorghe Coserea, Jul 07 2016, (Start)
G.f.: hypergeom([1/12, 5/12],[1],13824*x^3*(x^2-52*x+1)/(x^2-46*x+1)^3/(x+1)^2)/((x^2-46*x+1)*(x+1)^2)^(1/4).
0 = x*(x-1)*(x^2-52*x+1)*(x+1)^2*y'' + (x+1)*(3*x^4-106*x^3+102*x^2+102*x-1)*y' + (x^4-12*x^3+32*x^2+68*x+11)*y, where y is g.f.
Annihilating differential operator: x*(x-1)*(x^2-52*x+1)*(x+1)^2*Dx^2 + (x+1)*(3*x^4-106*x^3+102*x^2+102*x-1)*Dx + x^4-12*x^3+32*x^2+68*x+11.
(End)

A274665 Diagonal of the rational function 1/(1 - x - y - z + x*y + x*z - y*z).

Original entry on oeis.org

1, 4, 30, 280, 2890, 31584, 358176, 4168560, 49455450, 595480600, 7254787540, 89234708160, 1106335812400, 13808393670400, 173332340911200, 2186551157230560, 27701981424940890, 352297514508697800, 4495418315974868700, 57535568476437651600, 738373616359119126540
Offset: 0

Views

Author

Gheorghe Coserea, Jul 01 2016

Keywords

Comments

Annihilating differential operator: (-2*x+29*x^2-27*x^3)*Dx^2 + (-2+58*x-81*x^2)*Dx + 8-24*x.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 4; a[n_] := a[n] = ((29*n^2 - 29*n + 8)*a[n-1] - 3*(3*n - 4)*(3*n - 2)*a[n-2])/(2*n^2);
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 01 2017, after Vaclav Kotesovec *)
  • PARI
    my(x='x, y='y, z='z);
    R =  1/(1 - x - y - z + x*y + x*z - y*z);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x,y,z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 21; x = 'x + O('x^N);
    Vec(hypergeom([1/12, 5/12],[1],3456*x^5*(1-31/2*x+28*x^2-27/2*x^3)/(1-16*x+40*x^2)^3, N)/(1-16*x+40*x^2)^(1/4))

Formula

G.f.: hypergeom([1/12, 5/12],[1],3456*x^5*(1-31/2*x+28*x^2-27/2*x^3)/(1-16*x+40*x^2)^3)/(1-16*x+40*x^2)^(1/4).
0 = (-2*x+29*x^2-27*x^3)*y'' + (-2+58*x-81*x^2)*y' + (8-24*x)*y, where y is the g.f.
Recurrence: 2*n^2*a(n) = (29*n^2 - 29*n + 8)*a(n-1) - 3*(3*n - 4)*(3*n - 2)*a(n-2). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ 3^(3*n + 3/2) / (Pi*sqrt(5)*n*2^(n+1)). - Vaclav Kotesovec, Jul 05 2016

A274666 Diagonal of the rational function 1/(1 - x - y + x y - x z - y z - x y z).

Original entry on oeis.org

1, 5, 43, 461, 5491, 69395, 910855, 12274925, 168668035, 2352544535, 33204000853, 473179375355, 6797163712639, 98299113206663, 1429765398030943, 20899401842991341, 306819063154144675, 4521526749077118143, 66858281393757281641, 991598171159871109391
Offset: 0

Views

Author

Gheorghe Coserea, Jul 02 2016

Keywords

Comments

Annihilating differential operator: x*(2*x+5)*(2*x-1)*(x^2-47*x+3)*Dx^2 + (12*x^4-340*x^3-1319*x^2+530*x-15)*Dx + 4*x^3-24*x^2-445*x+75.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12},{1},1728*x^5*(x^2-47*x+3)*(-1+2*x)^2/(1-20*x+78*x^2-44*x^3+x^4)^3]/(1-20*x+78*x^2-44*x^3+x^4)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    my(x='x, y='y, z='z);
    R = 1 / (1 - x - y + x*y - x*z - y*z - x*y*z);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x, y, z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 20; x = 'x + O('x^N);
    Vec(hypergeom([1/12, 5/12],[1],1728*x^5*(x^2-47*x+3)*(-1+2*x)^2/(1-20*x+78*x^2-44*x^3+x^4)^3, N)/(1-20*x+78*x^2-44*x^3+x^4)^(1/4))

Formula

G.f.: hypergeom([1/12, 5/12],[1],1728*x^5*(x^2-47*x+3)*(-1+2*x)^2/(1-20*x+78*x^2-44*x^3+x^4)^3)/(1-20*x+78*x^2-44*x^3+x^4)^(1/4).
0 = x*(2*x+5)*(2*x-1)*(x^2-47*x+3)*y'' + (12*x^4-340*x^3-1319*x^2+530*x-15)*y' + (4*x^3-24*x^2-445*x+75)*y, where y is the g.f.
Recurrence: 3*n^2*(39*n - 64)*a(n) = (2067*n^3 - 5459*n^2 + 3947*n - 930)*a(n-1) - (3705*n^3 - 13490*n^2 + 15323*n - 5230)*a(n-2) + 2*(n-2)^2*(39*n - 25)*a(n-3). - Vaclav Kotesovec, Jul 05 2016
a(n) ~ sqrt(53 + 191/sqrt(13)) * (47 + 13*sqrt(13))^n / (sqrt(2)*Pi*n*6^(n+1)). - Vaclav Kotesovec, Jul 05 2016

A274667 Diagonal of the rational function 1/(1 - x - y - x y - x z - y z + x y z).

Original entry on oeis.org

1, 3, 31, 339, 4131, 53013, 705139, 9618003, 133672387, 1884947073, 26889061761, 387207732453, 5619687743151, 82101265925409, 1206262382507451, 17809706204128659, 264074421220475427, 3930338612143125849, 58692717332813782501, 879093138034007102289, 13202346737893575996541
Offset: 0

Views

Author

Gheorghe Coserea, Jul 02 2016

Keywords

Comments

Annihilating differential operator: x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*Dx^2 + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*Dx + 12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[HypergeometricPFQ[{1/12, 5/12},{1},1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3]/(1-12*x-34*x^2-36*x^3+x^4)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Jul 05 2016 *)
  • PARI
    my(x='x, y='y, z='z);
    R = 1/(1 - x - y - x*y - x*z - y*z + x*y*z);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x, y, z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 22; x = 'x + O('x^N);
    Vec(hypergeom([1/12, 5/12],[1],1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3, N)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4))

Formula

G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(x^3-41*x^2-29*x+2)*(1+2*x)^2/(1-12*x-34*x^2-36*x^3+x^4)^3)/(1-12*x-34*x^2-36*x^3+x^4)^(1/4).
0 = x*(2*x+1)*(6*x^2+x-8)*(x^3-41*x^2-29*x+2)*y'' + (36*x^6-964*x^5-917*x^4+2394*x^3+2339*x^2+400*x-16)*y' + (12*x^5-104*x^4+57*x^3+1067*x^2+640*x+48)*y, where y(x) is the g.f.
Recurrence: 2*n^2*(469*n^2 - 2106*n + 2229)*a(n) = (11725*n^4 - 64375*n^3 + 111011*n^2 - 68153*n + 13344)*a(n-1) + (46431*n^4 - 301356*n^3 + 678782*n^2 - 620403*n + 186048)*a(n-2) + (37989*n^4 - 284553*n^3 + 757682*n^2 - 829732*n + 299712)*a(n-3) - 2*(n-3)^2*(469*n^2 - 1168*n + 592)*a(n-4). - Vaclav Kotesovec, Jul 05 2016

A274669 Diagonal of the rational function 1/(1 - x - y - z + x y - x z - y z).

Original entry on oeis.org

1, 8, 138, 2960, 70090, 1756608, 45678864, 1219013664, 33162009210, 915589703600, 25578044554348, 721420319128704, 20509529725235824, 586986330979489280, 16895932626393943680, 488743896405192037440, 14198840150264907505050, 414069243091986225102480, 12115901803035178006468500
Offset: 0

Views

Author

Gheorghe Coserea, Jul 05 2016

Keywords

Comments

Annihilating differential operator: x*(x-2)*(11*x+12)*(27*x^2+92*x-3)*Dx^2 + (891*x^4+2132*x^3-689*x^2-4488*x+72)*Dx + 264*x^3+592*x^2+768*x-576.

Crossrefs

Programs

  • Mathematica
    gf = Hypergeometric2F1[1/12, 5/12, 1, -1728*x^4*(27*x^2 + 92*x - 3)*(x - 2)^2/(1 - 32*x + 88*x^2)^3]/(1 - 32*x + 88*x^2)^(1/4);
    CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 01 2017 *)
  • PARI
    my(x='x, y='y, z='z);
    R = 1/(1 - x - y - z + x*y - x*z - y*z);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(10, R, [x, y, z])
    
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 20; x = 'x + O('x^N);
    Vec(hypergeom([1/12, 5/12],[1],-1728*x^4*(27*x^2+92*x-3)*(x-2)^2/(1-32*x+88*x^2)^3, N)/(1-32*x+88*x^2)^(1/4))

Formula

G.f.: hypergeom([1/12, 5/12],[1],-1728*x^4*(27*x^2+92*x-3)*(x-2)^2/(1-32*x+88*x^2)^3)/(1-32*x+88*x^2)^(1/4).
0 = x*(x-2)*(11*x+12)*(27*x^2+92*x-3)*y'' + (891*x^4+2132*x^3-689*x^2-4488*x+72)*y' + (264*x^3+592*x^2+768*x-576)*y, where y is the g.f.
D-finite with recurrence 72*(n^2)*a(n) +6*(-363*n^2+341*n-74)*a(n-1) +(-1601*n^2+7316*n-7460)*a(n-2) +2*(371*n^2-1531*n+1550)*a(n-3) +33*(3*n-8)*(3*n-10)*a(n-4)=0. - R. J. Mathar, Jul 27 2022
a(n) ~ sqrt(35/68 + 32/(17*sqrt(13))) * ((46 + 13*sqrt(13))/3)^n / (Pi*n). - Vaclav Kotesovec, Mar 19 2023

A274670 Diagonal of the rational function 1/(1 - x - y - z - x y + x z - x y z).

Original entry on oeis.org

1, 7, 103, 1891, 38371, 824377, 18379579, 420563731, 9810403267, 232264240957, 5564072675833, 134574852764821, 3280845731941519, 80522277272406613, 1987608338377888483, 49305191067563987731, 1228368016027453079587, 30719511029184435338053, 770839386237255136597501
Offset: 0

Views

Author

Gheorghe Coserea, Jul 05 2016

Keywords

Comments

Annihilating differential operator: x*(8*x^2-5*x-24) * (2*x^4-9*x^3+205*x^2-167*x+6)*Dx^2 + (48*x^6-184*x^5+1535*x^4-1186*x^3-13973*x^2+8016*x-144)*Dx + 16*x^5-36*x^4-491*x^3+839*x^2-3840*x+1008.
Also diagonal of rational functions 1/(1 + y + 3*z + x*y + y*z + x*z + x*y*z), 1/(1 - 2*y - z - x*y - y*z - x*z - x*y*z), 1/(1 - 3*x + y + z - 2*x*y + y*z - x*z - x*y*z), 1/(1 - 2*x - y - z - x*y + y*z + x*z + x*y*z), 1/(1 - x - y - z + x*y - 2*x*z + x*y*z). - Gheorghe Coserea, Jul 03 2018

Crossrefs

Programs

  • Mathematica
    gf = Hypergeometric2F1[1/12, 5/12, 1, 1728*x^4*(6 - 167*x + 205*x^2 - 9*x^3 + 2*x^4)/(1 - 28*x + 78*x^2 - 4*x^3 + x^4)^3]/(1 - 28*x + 78*x^2 - 4*x^3 + x^4)^(1/4);
    CoefficientList[gf + O[x]^20, x] (* Jean-François Alcover, Dec 01 2017 *)
  • PARI
    \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
    read("hypergeom.gpi");
    N = 20; x = 'x + O('x^N);
    Vec(hypergeom([1/12, 5/12],[1],1728*x^4*(6-167*x+205*x^2-9*x^3+2*x^4)/(1-28*x+78*x^2-4*x^3+x^4)^3, N)/(1-28*x+78*x^2-4*x^3+x^4)^(1/4))
    
  • PARI
    diag(expr, N=22, var=variables(expr)) = {
      my(a = vector(N));
      for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
      for (n = 1, N, a[n] = expr;
        for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
      return(a);
    };
    diag(1/(1 - x - y - z - x*y + x*z - x*y*z), 19)
    \\ test: diag(1/(1 - x - y - z - x*y + x*z - x*y*z)) == diag(1/(1 - 2*x - y - z - x*y + y*z + x*z + x*y*z))
    \\ Gheorghe Coserea, Jul 03 2018

Formula

G.f.: hypergeom([1/12, 5/12],[1],1728*x^4*(6-167*x+205*x^2-9*x^3+2*x^4)/(1-28*x+78*x^2-4*x^3+x^4)^3)/(1-28*x+78*x^2-4*x^3+x^4)^(1/4).
0 = x*(8*x^2-5*x-24)*(2*x^4-9*x^3+205*x^2-167*x+6)*y'' + (48*x^6-184*x^5+1535*x^4-1186*x^3-13973*x^2+8016*x-144)*y' + (16*x^5-36*x^4-491*x^3+839*x^2-3840*x+1008)*y, where y is the g.f.
D-finite with recurrence 144*(n^2)*a(n) +6*(-663*n^2+653*n-158)*a(n-1) +(4037*n^2-6212*n+116)*a(n-2) +(2145*n^2-13829*n+21343)*a(n-3) +(-1637*n^2+13198*n-26109)*a(n-4) +2*(41*n^2-359*n+788)*a(n-5) -16*(n-5)^2*a(n-6)=0. - R. J. Mathar, Jul 27 2022
Previous Showing 31-40 of 71 results. Next