cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A273917 Number of ordered ways to write n as w^2 + 3*x^2 + y^4 + z^5, where w is a positive integer and x,y,z are nonnegative integers.

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 1, 3, 3, 1, 2, 5, 3, 1, 4, 4, 2, 2, 1, 2, 3, 1, 4, 8, 4, 1, 4, 4, 1, 1, 5, 8, 5, 3, 3, 3, 2, 1, 6, 6, 1, 1, 4, 7, 5, 3, 8, 10, 5, 2, 1, 3, 3, 2, 5, 5, 2, 3, 8, 8, 4, 2, 7, 8, 1, 1, 1, 3, 3, 2, 7, 7, 4, 3, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 04 2016

Keywords

Comments

Conjectures:
(i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 7, 11, 12, 15, 19, 24, 27, 31, 34, 35, 43, 46, 47, 56, 70, 71, 72, 87, 88, 115, 136, 137, 147, 167, 168, 178, 207, 235, 236, 267, 286, 297, 423, 537, 747, 762, 1017.
(ii) Any positive integer n can be written as w^2 + x^4 + y^5 + pen(z), where w is a positive integer, x,y,z are nonnegative integers, and pen(z) denotes the pentagonal number z*(3*z-1)/2.
Conjectures a(n) > 0 and (ii) verified up to 10^11. - Mauro Fiorentini, Jul 19 2023
See also A262813, A262857, A270566, A271106 and A271325 for some other conjectures on representations.

Examples

			a(1) = 1 since 1 = 1^2 + 3*0^2 + 0^4 + 0^5.
a(3) = 1 since 3 = 1^2 + 3*0^2 + 1^4 + 1^5.
a(7) = 1 since 7 = 2^2 + 3*1^2 + 0^4 + 0^5.
a(11) = 1 since 11 = 3^2 + 3*0^2 + 1^4 + 1^5.
a(12) = 1 since 12 = 3^2 + 3*1^2 + 0^4 + 0^5.
a(15) = 1 since 15 = 1^2 + 3*2^2 + 1^4 + 1^5.
a(19) = 1 since 19 = 4^2 + 3*1^2 + 0^4 + 0^5.
a(24) = 1 since 24 = 2^2 + 3*1^2 + 2^4 + 1^5.
a(27) = 1 since 27 = 5^2 + 3*0^2 + 1^4 + 1^5.
a(31) = 1 since 31 = 2^2 + 3*3^2 + 0^4 + 0^5.
a(34) = 1 since 34 = 1^2 + 3*0^2 + 1^4 + 2^5.
a(35) = 1 since 35 = 4^2 + 3*1^2 + 2^4 + 0^5.
a(43) = 1 since 43 = 4^2 + 3*3^2 + 0^4 + 0^5.
a(46) = 1 since 46 = 1^2 + 3*2^2 + 1^4 + 2^5.
a(47) = 1 since 47 = 2^2 + 3*3^2 + 2^4 + 0^5.
a(56) = 1 since 56 = 6^2 + 3*1^2 + 2^4 + 1^5.
a(70) = 1 since 70 = 5^2 + 3*2^2 + 1^4 + 2^5.
a(71) = 1 since 71 = 6^2 + 3*1^2 + 0^4 + 2^5.
a(72) = 1 since 72 = 6^2 + 3*1^2 + 1^4 + 2^5.
a(87) = 1 since 87 = 6^2 + 2*1^2 + 2^4 + 2^5.
a(88) = 1 since 88 = 2^2 + 3*1^2 + 3^4 + 0^5.
a(115) = 1 since 115 = 8^2 + 3*1^2 + 2^4 + 2^5.
a(136) = 1 since 136 = 10^2 + 3*1^2 + 1^4 + 2^5.
a(137) = 1 since 137 = 11^2 + 3*0^2 + 2^4 + 0^5.
a(147) = 1 since 147 = 12^2 + 3*1^2 + 0^4 + 0^5.
a(167) = 1 since 167 = 2^2 + 3*7^2 + 2^4 + 0^5.
a(168) = 1 since 168 = 2^2 + 3*7^2 + 2^4 + 1^5.
a(178) = 1 since 178 = 7^2 + 3*4^2 + 3^4 + 0^5.
a(207) = 1 since 207 = 10^2 + 3*5^2 + 0^4 + 2^5.
a(235) = 1 since 235 = 12^2 + 3*5^2 + 2^4 + 0^5.
a(236) = 1 since 236 = 12^2 + 3*5^2 + 2^4 + 1^5.
a(267) = 1 since 267 = 12^2 + 3*5^2 + 2^4 + 2^5.
a(286) = 1 since 286 = 4^2 + 3*3^2 + 0^4 + 3^5.
a(297) = 1 since 297 = 3^2 + 3*0^2 + 4^4 + 2^5.
a(423) = 1 since 423 = 11^2 + 3*10^2 + 1^4 + 1^5.
a(537) = 1 since 537 = 21^2 + 3*4^2 + 2^4 + 2^5.
a(747) = 1 since 747 = 11^2 + 3*0^2 + 5^4 + 1^5.
a(762) = 1 since 762 = 27^2 + 3*0^2 + 1^4 + 2^5.
a(1017) = 1 since 1017 = 27^2 + 3*0^2 + 4^4 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-3*x^2-y^4-z^5],r=r+1],{x,0,Sqrt[(n-1)/3]},{y,0,(n-1-3x^2)^(1/4)},{z,0,(n-1-3x^2-y^4)^(1/5)}];Print[n," ",r];Continue,{n,1,80}]

A338687 Number of ways to write n as x^4 + y^2 + floor(z^2/7), where x,y,z are integers with x >= 0, y >= 1 and z >= 2.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 2, 3, 4, 4, 4, 3, 2, 3, 4, 4, 6, 6, 4, 5, 5, 3, 4, 6, 7, 6, 6, 5, 5, 4, 4, 6, 8, 2, 5, 10, 4, 5, 5, 7, 6, 5, 4, 7, 6, 2, 5, 6, 7, 5, 8, 8, 4, 5, 6, 6, 6, 3, 4, 9, 3, 4, 5, 6, 9, 8, 7, 5, 4, 5, 6, 8, 6, 1, 6, 6, 5, 5, 5, 4, 11, 9, 7, 9, 6, 7, 7, 8, 5, 8, 8, 8, 6, 6, 5, 7, 8, 10, 10
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2021

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0.
We have verified a(n) > 0 for all n = 1..5*10^6.
See also A338686 for a similar conjecture.

Examples

			a(1) = 1 with 1 = 0^4 + 1^2 + floor(2^2/7).
a(75) = 1 with 75 = 0^4 + 8^2 + floor(9^2/7).
a(1799) = 1 with 1799 = 5^4 + 25^2 + floor(62^2/7).
a(7224) = 1 with 7224 = 9^4 + 19^2 + floor(46^2/7).
a(27455) = 2 with 27455 = 0^4 + 7^2 + floor(438^2/7) = 8^4 + 118^2 + floor(257^2/7).
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[n-x^4-Floor[y^2/7]],r=r+1],{x,0,(n-1)^(1/4)},{y,2,Sqrt[7(n-x^4)-1]}];tab=Append[tab,r],{n,1,100}];Print[tab]

A260418 Number of ways to write 12*n+5 as 4*x^4 + 4*y^2 + z^2, where x is a nonnegative integer, and y and z are positive integers.

Original entry on oeis.org

1, 2, 2, 2, 1, 3, 2, 4, 3, 2, 3, 2, 5, 2, 3, 3, 2, 4, 3, 3, 3, 2, 5, 2, 3, 3, 2, 6, 3, 4, 3, 5, 6, 3, 3, 5, 3, 5, 4, 2, 5, 4, 7, 3, 2, 7, 4, 6, 2, 2, 4, 3, 8, 4, 1, 2, 4, 8, 6, 2, 5, 2, 7, 4, 4, 3, 4, 5, 2, 4, 5, 6, 4, 3, 2, 5, 2, 7, 4, 5, 5, 2, 5, 3, 6, 5, 4, 7, 3, 4, 3, 5, 9, 3, 4, 3, 5, 11, 4, 5, 5
Offset: 0

Views

Author

Zhi-Wei Sun, Aug 04 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 4, 54, 159, 289, 999, 1175, 1404, 16391, 39688.
(ii) All the numbers 24*n+4 (n = 0,1,2,...) can be written as 3*x^4+24*y^2+z^2, where x,y,z are integers with x > 0 and z > 0.
(iii) All the numbers 24*n+13 (n = 0,1,2,...) can be written as 3*x^4+9*y^2+z^2 with x,y,z positive integers.
(iv) All the numbers 24*n+r (n = 0,1,2,...) can be written as a*x^4+b*y^2+c*z^2 with x an integer and y and z positive integers, provided that (r,a,b,c) is among the following quadruples: (5,3,1,1), (5,12,4,1), (7,3,6,1), (10,5,1,1), (11,3,8,3), (11,6,3,2), (17,9,4,1).
See A290491 for a similar conjecture.

Examples

			a(4) = 1 since 12*4+5 = 4*0^4 + 4*1^2 + 7^2.
a(54) = 1 since 12*54+5 = 4*0^4 + 4*11^2 + 13^2.
a(159) = 1 since 12*159+5 = 4*0^4 + 4*4^2 + 43^2.
a(289) = 1 since 12*289+5 = 4*1^4 + 4*19^2 + 45^2.
a(999) = 1 since 12*999+5 = 4*7^4 + 4*21^2 + 25^2.
a(1175) = 1 since 12*1175+5 = 4*3^4 + 4*55^2 + 41^2.
a(1404) = 1 since 12*1404+5 = 4*3^4 + 4*10^2 + 127^2.
a(16391) = 1 since 12*16391+5 = 4*5^4 + 4*207^2 + 151^2.
a(39688) = 1 since 12*39688+5 = 4*5^4 + 4*50^2 + 681^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[12n+5-4x^4-4y^2],r=r+1],{x,0,((12n+5)/4)^(1/4)},{y,1,Sqrt[(12n+5-4x^4)/4]}];Print[n," ",r],{n,0,100}]

A270705 Number of ordered ways to write n as x^2*pen(x) + pen(y) + pen(z) with pen(x) = x*(3x+1)/2 and pen(y) <= pen(z), where x, y and z are integers ("pen" stands for "pentagonal").

Original entry on oeis.org

1, 2, 5, 5, 6, 4, 3, 4, 4, 4, 3, 2, 3, 3, 6, 4, 4, 4, 3, 3, 3, 4, 6, 5, 6, 5, 5, 8, 8, 9, 7, 5, 7, 6, 7, 9, 7, 10, 5, 5, 9, 6, 12, 7, 8, 6, 3, 10, 6, 5, 7, 5, 8, 7, 8, 9, 5, 9, 8, 7, 5, 7, 7, 5, 6, 6, 5, 4, 6, 4, 8, 5, 9, 6, 3, 7, 5, 8, 8, 8, 8, 6, 6, 6, 6, 6, 8, 3, 1, 4, 6
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 21 2016

Keywords

Comments

Conjecture: (i) Any natural number can be written as a*x^2*pen(x) + b*pen(y) + c*pen(z) with x, y and z integers, provided that (a,b,c) is among the following ordered triples: (j,1,k) (j = 1,2; k = 1,2,3,4), (1,2,3), (3,1,4) and (4,1,3).
(ii) Every n = 0,1,2,... can be expressed as x^2*pen(x) + T(y) + T(z) with x, y and z integers, where T(m) denotes the triangular number m*(m+1)/2. Also, for each (a,b) = (1,2),(1,4),(2,2), any natural number can be written as a*x^2*T(x) + b*T(y) + T(z) with x, y and z integers.
(iii) Each natural number can be written as x^2*P(x) + pen(y) + pen(z) with x, y and z integers, where P(x) is either of the following polynomials: a*T(x) (a = 1,2,3,4,5), x*(5x+3)/2, x*(3x+1), x*(3x+2), x*(7x+1)/2, x*(4x+1), x*(4x+3), x*(9x+5)/2, x*(5x+3), x*(11x+9)/2, x*(13x+5)/2, x*(17x+9)/2, 3x*(3x+2), x*(11x+2).
See also A270594 and A270706 for other similar conjectures.

Examples

			a(88) = 1 since 88 = 1^2*pen(1) + pen(-5) + pen(-6).
		

Crossrefs

Programs

  • Mathematica
    pen[x_]:=pen[x]=x(3x+1)/2
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[pQ[n-pen[y]-x^2*pen[x]],r=r+1],{y,-Floor[(Sqrt[12n+1]+1)/6],(Sqrt[12n+1]-1)/6},{x,-1-Floor[(2(n-pen[y])/3)^(1/4)],(2(n-pen[y])/3)^(1/4)}];Print[n," ",r];Continue,{n,0,90}]

A270706 Number of ordered ways to write n as x^2*T(x) + y^2 + T(z), where x, y and z are integers with x nonzero, y positive and z nonnegative, and T(m) denotes the triangular number m*(m+1)/2.

Original entry on oeis.org

1, 2, 1, 2, 4, 2, 2, 4, 2, 3, 5, 2, 3, 4, 3, 6, 4, 2, 6, 5, 2, 4, 6, 2, 3, 7, 3, 5, 6, 4, 8, 5, 2, 5, 3, 5, 9, 7, 3, 5, 8, 3, 6, 5, 2, 8, 4, 2, 9, 6, 4, 7, 7, 4, 5, 7, 5, 9, 5, 3, 7, 4, 5, 12, 9, 4, 5, 8, 4, 6, 11, 3, 9, 5, 3, 10, 3, 4, 9, 6, 5, 11, 8, 5, 7, 9, 3, 5, 4, 1
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 21 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 3, 90, 438, 480, 7108.
(ii) Let pen(x) = x*(3x+1)/2. Any natural number can be written as a*f(x)*g(x) + f(y) + g(z) with x, y and z integers, whenever (a,f(x),g(x)) is among the following ordered triples: (1,T(x),x^2), (1,T(x),pen(x)), (1,T(x),x*(5x+1)/2), (1,T(x),x*(5x+3)/2), (1,T(x),x*(3x+j)) (j = 1,2), (1,pen(x),3*T(x)), (1,pen(x),x*(7x+j)/2) (j = 1,3,5), (1,pen(x),x*(4x+1)), (2,T(x),x^2), (2,T(x),pen(x)), (2,T(x),x(5x+j)/2) (j = 1,3), (2,T(x),x*(3x+j)) (j = 1,2), (2,2*T(x),pen(x)), (2,pen(x),x(7x+j)/2) (j = 3,5), (k,x^2,pen(x)) (k = 1,2,3,4,5,8,11).
(iii) Each natural number can be written as P(x,y,z) with x, y and z integers, where P(x,y,z) is either of the following polynomials: T(x)*x(5x+1)/2+T(y)+2*T(z), a*T(x)*pen(x)+pen(y)+pen(z) (a = 1,2,3,4), T(x)*pen(x)+pen(y)+3*pen(z), T(x)*pen(x)+pen(y)+4*pen(z), 2*T(x)*pen(x)+pen(y)+3*pen(z), pen(x)*x(5x+j)/2+pen(y)+3*pen(z) (j = 1,3), x(3x+2)*pen(x)+pen(y)+4*pen(z), pen(x)*x(7x+1)/2+pen(y)+pen(z), pen(x)*x(9x+7)/2+pen(y)+pen(z).
See also A270594 and A270705 for some other similar conjectures.

Examples

			a(1) = 1 since 1 = (-1)^2*T(-1) + 1^2 + T(0).
a(3) = 1 since 3 = 1^2*T(1) + 1^2 + T(1).
a(90) = 1 since 90 = 3^2*T(3) + 6^2 + T(0).
a(438) = 1 since 438 = 4^2*T(4) + 5^2 + T(22).
a(480) = 1 since 480 = 1^2*T(1) + 17^2 + T(19).
a(7108) = 1 since 1^2*T(1) + 69^2 + T(68).
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[x!=0&&TQ[n-y^2-x^3*(x+1)/2],r=r+1],{y,1,Sqrt[n]},{x,-1-Floor[(2(n-y^2))^(1/4)],(2(n-y^2))^(1/4)}];Print[n," ",r];Continue,{n,1,90}]

A270921 Number of ordered ways to write n as x*(3x+2) + y*(5y+1)/2 - z^4, where x and y are integers, and z is a nonnegative integer with z^4 <= n.

Original entry on oeis.org

1, 2, 3, 3, 2, 1, 1, 3, 3, 3, 4, 3, 1, 1, 1, 2, 5, 3, 3, 3, 3, 4, 3, 4, 6, 3, 6, 4, 3, 4, 2, 3, 3, 2, 2, 3, 2, 2, 4, 3, 3, 5, 9, 6, 3, 4, 2, 2, 2, 6, 3, 3, 2, 2, 3, 2, 2, 4, 5, 4, 5, 3, 2, 2, 6, 7, 4, 4, 2, 2, 4, 3, 3, 3, 2, 3, 4, 4, 4, 2, 5
Offset: 0

Views

Author

Zhi-Wei Sun, Mar 25 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 0, 5, 6, 12, 13, 14, 112, 193, 194, 200, 242, 333, 345, 376, 492, 528, 550, 551, 613, 797, 1178, 1195, 1222, 1663, 3380, 3635, 6508, 8755, 9132, 12434, 20087.
Compare this conjecture with the conjecture in A270566.

Examples

			a(5) = 1 since 5 = 1*(3*1+2) + 0*(5*0+1)/2 - 0^4.
a(6) = 1 since 6 = 1*(3*1+2) + (-1)*(5*(-1)+1)/2 - 1^4.
a(13) = 1 since 13 = 1*(3*1+2) + (-2)*(5*(-2)+1)/2 - 1^4.
a(376) = 1 since 376 = 0*(3*0+2) + (-16)*(5*(-16)+1)/2 - 4^4.
a(9132) = 1 since 9132 = (-13)*(3*(-13)+2) + 59*(5*59+1)/2 - 3^4.
a(12434) = 1 since 12434 = (-21)*(3*(-21)+2) + 78*(5*78+1)/2 - 8^4.
a(20087) = 1 since 20087 = 19*(3*19+2) + 87*(5*87+1)/2 - 0^4.
5, 6, 12, 13, 14, 112, 193, 194, 200, 242, 333, 345, 376, 492, 528, 550, 551, 613, 797, 1178, 1195, 1222, 1663, 3380, 3635, 6508, 8755, 9132, 12434, 20087
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[40n+1]]&&(Mod[Sqrt[40n+1],10]==1||Mod[Sqrt[40n+1],10]==9)
    Do[r=0;Do[If[pQ[n+x^4-y(3y+2)],r=r+1],{x,0,n^(1/4)},{y,-Floor[(Sqrt[3(n+x^4)+1]+1)/3],(Sqrt[3(n+x^4)+1]-1)/3}];Print[n," ",r];Continue,{n,0,80}]

A270928 Number of ways to write n = x*(x-1)/2 + y*(y-1)/2 + z*(z-1)/2, where 0 < x <= y <= z, and one of x, y, z is prime.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 3, 2, 1, 2, 1, 3, 3, 2, 2, 2, 2, 2, 2, 1, 3, 4, 2, 2, 2, 2, 1, 4, 2, 3, 2, 2, 3, 2, 2, 2, 4, 2, 3, 3, 1, 2, 5, 1, 2, 3, 3, 4, 3, 3, 1, 5, 1, 3, 2, 3, 3, 5, 2, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 26 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for n > 0 with the only exception n = 15^2 = 225. Also, a(n) = 1 only for n = 1, 2, 4, 5, 6, 8, 11, 14, 15, 18, 20, 29, 36, 50, 53, 60, 62, 96, 117, 119, 218, 411, 540, 645, 1125, 1590, 2346, 4068.
(ii) Any positive integer can be written as p*(p-1)/2 + x*(x-1)/2 + P(y) with p prime and x and y integers, where the polynomial P(y) is either of the following ones: y*(y-1), y*(3*y+1)/2, y*(5*y+j)/2 (j = 1,3), y*(3*y+j) (j = 1,2), y*(7*y+3)/2, y*(9*y+j)/2 (j = 1,5,7), y*(5*y+j) (j = 1,3), y*(11*y+9)/2, 2*y*(3*y+j) (j = 1,2), y*(7*y+3).
(iii) Any positive integer can be written as p*(p-1)/2 + P(x,y) with p prime and x and y integers, where the polynomial P(x,y) is either of the following ones: a*x*(x-1)/2+y*(3*y+1)/2 (a = 2,3,4), x*(x-1)+y*(5*y+3)/2, b*x^2+y*(3*y+1)/2 (b = 1,2,3), x^2+y*(5*y+j)/2 (j = 1,3), x^2+y*(3*y+1), x^2+y*(7*y+j)/2 (j = 1,3,5), x^2+y*(4*y+1).
(iv) Every positive integer can be written as p*(p-1)/2+x*(3*x+1)/2+y*(3*y+1)/2 with p prime, x an nonnegative integer and y an integer. Also, for each r = 1,3, any positive integer n can be written as p*(p-1)/2+x*(3*x-1)/2+y*(5*y+r)/2, where p is a prime, and x and y are integers with x nonnegative.
Note that Gauss proved a classical assertion of Fermat which states that any natural number is the sum of three triangular numbers.
See also A270966 for a similar conjecture involving (p-1)^2 with p prime.
The conjecture that a(n) > 0 except for n = 225 appeared as Conjecture 1.2(i) of the author's JNT paper in the links.

Examples

			a(1) = 1 since 1 = 1*(1-1)/2 + 1*(1-1)/2 + 2*(2-1)/2 with 2 prime.
a(4) = 1 since 4 = 1*(1-1)/2 + 2*(2-1)/2 + 3*(3-1)/2 with 2 and 3 prime.
a(29) = 1 since 29 = 1*(1-1)/2 + 2*(2-1)/2 + 8*(8-1)/2 with 2 prime.
a(50) = 1 since 50 = 2*(2-1)/2 + 7*(7-1)/2 + 8*(8-1)/2 with 2 and 7 prime.
a(119) = 1 since 119 = 8*(8-1)/2 + 9*(9-1)/2 + 11*(11-1)/2 with 11 prime.
a(411) = 1 since 411 = 16*(16-1)/2 + 16*(16-1)/2 + 19*(19-1)/2 with 19 prime.
a(1125) = 1 since 1125 = 3*(3-1)/2 + 34*(34-1)/2 + 34*(34-1)/2 with 3 prime.
a(1590) = 1 since 1590 = 7*(7-1)/2 + 37*(37-1)/2 + 43*(43-1)/2 with 7, 37 and 43 prime.
a(2346) = 1 since 2346 = 6*(6-1)/2 + 16*(16-1)/2 + 67*(67-1)/2 with 67 prime.
a(4068) = 1 since 4068 = 7*(7-1)/2 + 34*(34-1)/2 + 84*(84-1)/2 with 7 prime.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]]
    Do[r=0;Do[If[TQ[n-x(x-1)/2-y(y-1)/2]&&(PrimeQ[x]||PrimeQ[y]||PrimeQ[(Sqrt[8(n-x(x-1)/2-y(y-1)/2)+1]+1)/2]),r=r+1],{x,1,(Sqrt[8n/3+1]+1)/2},{y,x,(Sqrt[8(n-x(x-1)/2)/2+1]+1)/2}];Print[n," ",r];Continue,{n,1,70}]

A270966 Number of ways to write n as x^2 + y^2 + z*(3z+1)/2, where x, y and z are integers with 0 <= x <= y such that x or y has the form p-1 with p prime.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 2, 3, 3, 5, 3, 2, 4, 2, 3, 3, 2, 4, 3, 5, 4, 2, 4, 4, 5, 2, 3, 2, 4, 5, 4, 5, 3, 6, 6, 4, 4, 4, 3, 4, 5, 1, 3, 5, 8, 5, 3, 6, 3, 4, 4, 4, 4, 4, 5, 3, 3, 6, 5, 8, 4, 2, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 27 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 49, 608.
(ii) Let T(x) = x*(x+1)/2 and pen(x) = x*(3x+1)/2. Any positive integer can be written as (p-1)^2+P(x,y) with p prime and x and y integral, where the polynomial P(x,y) is either of the following ones: T(x)+2*pen(y), 2*T(x)+pen(y), T(x)+y*(5y+1)/2, T(x)+y*(9y+5)/2, pen(x)+y*(5y+j)/2 (j = 1,3), pen(x)+y*(7y+k)/2 (k = 3,5), pen(x)+y*(4y+j) (j = 1,3), pen(x)+y*(5y+r) (r = 1,2,3,4), pen(x)+2y*(3y+i) (i = 1,2), pen(x)+6*pen(y), x*(5x+1)/2+y*(3y+2), x*(5x+1)/2+y*(9y+7)/2, x*(5x+3)/2+y*(3y+i) (i = 1,2), x*(5x+3)/2+y*(9y+5)/2.
See also A270928 for a similar conjecture involving T(p-1) = p*(p-1)/2 with p prime.

Examples

			a(1) = 1 since 1 = 0^2 + (2-1)^2 + 0*(3*0+1)/2 with 2 prime.
a(12) = 2 since 12 = (2-1)^2 + 2^2 + 2*(2*3+1)/2 = (2-1)^2 + 3^2 + 1*(3*1+1)/2 with 2 prime.
a(49) = 1 since 49 = (2-1)^2 + 6^2 + (-3)*(3*(-3)+1)/2 with 2 prime.
a(608) = 1 since 608 = (7-1)^2 + 14^2 + (-16)*(3*(-16)+1)/2 with 7 prime.
		

Crossrefs

Programs

  • Mathematica
    pQ[n_]:=pQ[n]=IntegerQ[Sqrt[24n+1]]
    Do[r=0;Do[If[(PrimeQ[x+1]||PrimeQ[y+1])&&pQ[n-x^2-y^2],r=r+1],{x,0,Sqrt[n/2]},{y,x,Sqrt[n-x^2]}];Print[n," ",r];Continue,{n,1,70}]

A334138 Number of ways to write n as x^4 + y*(2*y+1) + z*(3*z+1), where x is a nonnegative integer, and y and z are integers.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 2, 2, 1, 3, 4, 2, 2, 3, 4, 4, 4, 3, 3, 4, 5, 2, 2, 4, 5, 6, 2, 3, 3, 6, 7, 4, 4, 2, 3, 5, 3, 2, 4, 5, 5, 1, 2, 2, 6, 8, 5, 3, 2, 4, 4, 5, 3, 4, 5, 5, 1, 4, 5, 5, 5, 2, 3, 0, 3, 6, 4, 4, 4, 5, 6, 2, 4, 4, 4, 4, 2, 2, 2, 7, 10, 5, 4, 4, 5, 7, 3, 4, 6, 3
Offset: 0

Views

Author

Zhi-Wei Sun, Apr 15 2020

Keywords

Comments

Note that {y*(2*y+1): y is an integer} = {n*(n+1)/2: n = 0,1,...}.
Conjecture 1: a(n) = 0 only for n = 64. In other words, any nonnegative integer n not equal to 64 can be written as x^4 + y*(2*y+1) + z*(3*z+1) with x,y,z integers.
Conjecture 2: (i) The set {x^4+y^2+z(3z+1)/2: x,y,z are integers} contains all nonnegative integers except for 455.
(ii) The set {x^4+y(3y+1)+z(5z+1)/2: x,y,z are integers} contains all nonnegative integers except for 59, and the set {x^4+y(3y+1)+z(5z+3)/2: x,y,z are integers} contains all nonnegative integers except for 856.
(iii) The set {x^4+y(3y+1)+z(3z+2): x,y,z are integers} = {x^4+3y(y+1)/2+z(3z+1)/2: x,y,z are integers} contains all nonnegative integers except for 1975.
(iv) The set {x^4+y(5y+3)+z(3z+1)/2: x,y,z are integers} contains all nonnegative integers except for 2899.
(v) The set {x^4+y(5y+4)+z(3z+1)/2: x,y,z are integers} contains all nonnegative integers except for 17960.
We have verified Conjecture 1 for n up to 10^8, parts (i) and (iii) of Conjecture 2 for n up to 5*10^7, and parts (ii), (iv) and (v) of Conjecture 2 for n up to 2*10^6. See also A334147 for the list of those numbers n with a(n) = 1. - Zhi-Wei Sun, Apr 16 2020

Examples

			a(9) = 1 with 9 = 1^4 + (-2)*(2*(-2)+1) + (-1)*(3*(-1)+1).
a(554) = 1 with 554 = 2^4 + 16*(2*16+1) + (-2)*(3*(-2)+1).
a(555) = 1 with 555 = 2^4 + (-5)*(2*(-5)+1) + (-13)*(3*(-13)+1).
a(25713) = 1 with 25713 = 8^4 + (-85)*(2*(-85)+1) + 49*(3*49+1).
a(80488) = 1 with 80488 = 0^4 + (-196)*(2*(-196)+1) + (-36)*(3*(-36)+1).
		

Crossrefs

Programs

  • Mathematica
    QQ[n_]:=QQ[n]=IntegerQ[Sqrt[12n+1]];
    tab={};Do[r=0;Do[If[QQ[n-x^4-y(2y+1)],r=r+1],{x,0,n^(1/4)},{y,-Floor[(Sqrt[8(n-x^4)+1]+1)/4],(Sqrt[8(n-x^4)+1]-1)/4}];tab=Append[tab,r],{n,0,90}];Print[tab]

A271365 Number of ordered ways to write n as u^2 + v^3 + x^4 + y^5 + z^6, where u is a positive integer, and v, x, y, z are nonnegative integers.

Original entry on oeis.org

1, 4, 6, 5, 5, 6, 4, 1, 2, 7, 9, 6, 4, 3, 1, 1, 6, 12, 10, 4, 3, 3, 1, 1, 6, 12, 11, 7, 6, 4, 2, 4, 9, 12, 8, 5, 10, 12, 6, 2, 5, 9, 8, 8, 10, 6, 2, 3, 8, 13, 10, 8, 11, 8, 2, 1, 6, 10, 8, 7, 6, 2, 2, 7, 15, 20, 14, 9, 13, 11
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 05 2016

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 8, 15, 16, 23, 24, 56. Moreover, the only positive integers not represented by u^2+v^3+x^4+y^5 (u > 0 and v,x,y >= 0) are 8, 15, 23, 55, 62, 71, 471, 478, 510, 646, 806, 839, 879, 939, 1023, 1063, 1287, 2127, 5135, 6811, 7499, 9191, 26471.
Note that 1/2+1/3+1/4+1/5+1/6 = 29/20 < 3/2.

Examples

			a(1) = 1 since 1 = 1^2 + 0^3 + 0^4 + 0^5 + 0^6.
a(8) = 1 since 8 = 2^2 + 1^3 + 1^4 + 1^5 + 1^6.
a(15) = 1 since 15 = 2^2 + 2^3 + 1^4 + 1^5 + 1^6.
a(16) = 1 since 16 = 4^2 + 0^3 + 0^4 + 0^5 + 0^6.
a(23) = 1 since 23 = 2^2 + 1^3 + 2^4 + 1^5 + 1^6.
a(24) = 1 since 24 = 4^2 + 2^3 + 0^4 + 0^5 + 0^6.
a(56) = 1 since 56 = 4^2 + 2^3 + 0^4 + 2^5 + 0^6.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]]
    Do[r=0;Do[If[SQ[n-x1^6-x2^5-x3^4-x4^3],r=r+1],{x1,0,n^(1/6)},{x2,0,(n-x1^6)^(1/5)},{x3,0,(n-x1^6-x2^5)^(1/4)},{x4,0,(n-x1^6-x2^5-x3^4)^(1/3)}];Print[n," ",r];Continue,{n,1,70}]
Previous Showing 11-20 of 22 results. Next