cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A273131 Numbers n such that the bottom entry of the difference table of the divisors of n divides n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 24, 32, 64, 128, 152, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648
Offset: 1

Views

Author

Omar E. Pol, May 16 2016

Keywords

Comments

All powers of 2 are in the sequence because the bottom entries of their difference triangles are always 1's.
Besides 6, 12, 14, 24 and 152, are there any other non-powers of 2 in this sequence? - David A. Corneth, May 19 2016

Examples

			For n = 14 the difference triangle of the divisors of 14 is
1 . 2 . 7 . 14
. 1 . 5 . 7
. . 4 . 2
. . .-2
The bottom entry is -2 and -2 divides 14, so 14 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Function[k, If[k == {0}, False, Divisible[#, First@ k]]]@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &] (* Michael De Vlieger, May 17 2016 *)
  • PARI
    isok(n) = {my(d = divisors(n)); my(nd = #d); my(vd = d); for (k=1, nd-1, vd = vector(#vd-1, j, vd[j+1] - vd[j]);); vd[1] && ((n % vd[1]) == 0);} \\ Michel Marcus, May 16 2016
    
  • PARI
    is(n) = my(d=divisors(n),s=sum(i=1,#d,binomial(#d-1,i-1)*(-1)^i*d[i]));if(s!=0,n%s==0) \\ David A. Corneth, May 19 2016
    
  • Sage
    def is_A273131(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for m, d in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return T[len(D)-1, 0].divides(n)
    print([n for n in range(1, 6000) if is_A273131(n)])
    # Peter Luschny, May 18 2016

Extensions

a(12) = 128 and a(14)-a(25) from Michel Marcus, May 16 2016
a(26)-a(28) from David A. Corneth, May 19 2016
a(29)-a(37) from Lars Blomberg, Oct 18 2016

A273133 a(n) = n minus the bottom entry of the difference table of the divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 5, 10, 1, 11, 1, 16, 7, 15, 1, 6, 1, 31, 13, 28, 1, 36, 9, 34, 19, 31, 1, -20, 1, 31, 25, 46, 7, 47, 1, 52, 31, 106, 1, -62, 1, 31, 21, 64, 1, 151, 13, 66, 43, 31, 1, -34, 19, 8, 49, 82, 1, 727, 1, 88, 71, 63, 25, -6, 1, 31, 61, 148, 1, 12, 1, 106, 11, 31, 13, 22, 1, 439, 65, 118, 1, 1541
Offset: 1

Views

Author

Omar E. Pol, May 17 2016

Keywords

Comments

From David A. Corneth, May 20 2016: (Start)
The bottom of the difference table of the divisors of n can be expressed in terms of the divisors of n and use of Pascal's triangle. Suppose a, b, c, d and e are the divisors of n. Then the difference table is as follows (rotated for ease of reading):
a
. . b-a
b . . . . c-2b+a
. . c-b . . . . . d-3c+3b-a
c . . . . d-2c+b . . . . . . e-4d+6c-4b+a
. . d-c . . . . . e-3d+3c-b
d . . . . e-2d+c
. . e-d
e
From here we can see Pascal's triangle occurring. Induction can be used to show that it's the case in general.
(End)

Examples

			For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is:
1 . 2 . 3 . 6 . 9 . 18
. 1 . 1 . 3 . 3 . 9
. . 0 . 2 . 0 . 6
. . . 2 .-2 . 6
. . . .-4 . 8
. . . . . 12
The bottom entry is 12, so a(18) = 18 - 12 = 6.
		

Crossrefs

Programs

  • Mathematica
    Array[# - First@ NestWhile[Differences, Divisors@ #, Length@ # > 1 &] &, 84] (* Michael De Vlieger, May 20 2016 *)
  • PARI
    a(n) = my(d=divisors(n));n-sum(i=1,#d,binomial(#d-1,i-1)*(-1)^(#d-i)*d[i]) \\ David A. Corneth, May 20 2016
  • Sage
    def A273133(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for (m, d) in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return n - T[len(D)-1, 0]
    print([A273133(n) for n in range(1, 85)]) # Peter Luschny, May 18 2016
    

Formula

a(n) = n - A187202(n).
a(n) = 1, if n is prime.
a(2^k) = 2^k - 1 = A000225(k), k >= 0.

A273157 Numbers which have nonpositive entries in the difference table of their divisors (complement of A273130).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 22, 24, 26, 28, 30, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 52, 54, 56, 58, 60, 62, 63, 66, 68, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 86, 88, 90, 91, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116, 117
Offset: 1

Views

Author

Peter Luschny, May 16 2016

Keywords

Comments

Primorial numbers (A002110) greater than 2 are in this sequence.

Examples

			30 is in this sequence because the difference table of the divisors of 30 is:
[1, 2, 3, 5, 6, 10, 15, 30]
[1, 1, 2, 1, 4, 5, 15]
[0, 1, -1, 3, 1, 10]
[1, -2, 4, -2, 9]
[-3, 6, -6, 11]
[9, -12, 17]
[-21, 29]
[50]
		

Crossrefs

Cf. A069059, A187202, A273102, A273103, A273109, A273130 (complement).

Programs

  • Sage
    def nsf(z):
        D = divisors(z)
        T = matrix(ZZ, len(D))
        for m, d in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
                if T[m-k, k] <= 0: return True
        return False
    print([n for n in range(1, 100) if nsf(n)])
Previous Showing 11-13 of 13 results.