cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A373158 Fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

0, 2, 6, 4, 30, 8, 210, 6, 12, 32, 2310, 10, 30030, 212, 36, 8, 510510, 14, 9699690, 34, 216, 2312, 223092870, 12, 60, 30032, 18, 214, 6469693230, 38, 200560490130, 10, 2316, 510512, 240, 16, 7420738134810, 9699692, 30036, 36, 304250263527210, 218, 13082761331670030, 2314, 42, 223092872, 614889782588491410, 14
Offset: 1

Views

Author

Antti Karttunen, May 27 2024

Keywords

Comments

Completely additive with a(p^e) = e * A002110(A000720(p)).

Crossrefs

Programs

  • PARI
    A373158(n) = { my(f=factor(n)); sum(i=1, #f~, f[i, 2]*prod(i=1,primepi(f[i, 1]),prime(i))); }; \\ corrected Jun 25 2024

Formula

From Antti Karttunen, Jun 25 2024, Oct 28 2024: (Start)
a(n) = A276085(A003961(n)).
For n >= 1, a(A000040(n)) = A002110(n), a(A002110(n)) = A060389(n).
(End)

Extensions

Data [first incorrect term was at a(8)] and the faulty PARI-program corrected by Antti Karttunen, Jun 25 2024

A276152 a(n) = {smallest prime not dividing n} times {greatest primorial number which divides n} = A053669(n) * A053589(n).

Original entry on oeis.org

2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 210, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6, 2, 6, 2, 30, 2, 6
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2016

Keywords

Comments

a(n) with n odd must = 2 because 1 is the only odd primorial, thereby the only primorial dividing odd n, and 2 is the smallest prime not dividing odd n. - Michael De Vlieger, Aug 25 2016

Examples

			a(6) = 30 because the smallest nondivisor prime 6 = 5 and the smallest primorial dividing 6 is 6 itself. 5 * 6 = 30.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 2, Prime@If[! MemberQ[#, 0], Length@ # + 1, Position[#, 0][[1, 1]]] (Times @@ Prime@ Flatten@ Position[TakeWhile[#, # > 0 &], 1]) &@ Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@# -> 1 &, f]]@ FactorInteger@ n], {n, 120}] (* or *)
    Table[If[OddQ@ n, 2, Function[p, Prime[p + 1] Product[Prime@ k, {k, #[[p]]}]][LengthWhile[Differences@ #, # == 1 &] + 1] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 120}] (* Michael De Vlieger, Aug 25 2016 *)

Formula

a(n) = A053589(n) * A053669(n).
a(n) = A002110(A257993(n)).

A328770 Numbers in whose primorial base expansion any digit is at most half of the maximal allowed digit for that position.

Original entry on oeis.org

0, 2, 6, 8, 12, 14, 30, 32, 36, 38, 42, 44, 60, 62, 66, 68, 72, 74, 90, 92, 96, 98, 102, 104, 210, 212, 216, 218, 222, 224, 240, 242, 246, 248, 252, 254, 270, 272, 276, 278, 282, 284, 300, 302, 306, 308, 312, 314, 420, 422, 426, 428, 432, 434, 450, 452, 456, 458, 462, 464, 480, 482, 486, 488, 492, 494, 510, 512, 516, 518, 522
Offset: 1

Views

Author

Antti Karttunen, Oct 31 2019

Keywords

Comments

Equally, numbers in whose primorial base expansion there are no digits more than ((prime(k)-1)/2), where prime(k) is the modulus for the digit position k = 1 + maximal allowed digit for that position.
Differs from A276154, for example, this sequence does not contain term 120.

Examples

			2 is included, as in the primorial base (A049345) it is written as "10", thus 2 is included in the sequence as the maximal value that can occur in the second rightmost digit (in the primorial base representation) is 2 (as in "20" = 4 or "21" = 5 for example).
		

Crossrefs

Subsequence of A276154 (because of Bertrand's postulate).

Programs

  • Mathematica
    q[n_] := Module[{k = n, p = 2, s = {}, r}, While[{k, r} = QuotientRemainder[k, p]; k != 0 || r != 0, AppendTo[s, r]; p = NextPrime[p]]; AllTrue[s/(Prime[Range[1, Length[s]]] - 1), # <= 1/2 &]]; Select[Range[0, 600], q] (* Amiram Eldar, Mar 13 2024 *)
  • PARI
    isA328770(n) = { my(p=2); while(n, if((n%p)>((p-1)/2), return(0)); n = n\p; p = nextprime(1+p)); (1); };

Formula

a(n) = A328849(n)/2.
Because doubling these numbers in primorial base does not generate any carries, it follows that:
A276086(a(n)+a(n)) = A276086(a(n)) * A276086(a(n)) = A328834(n)^2.

A353572 Shifted variant of A342002: a(n) = A353571(A276086(n)), where A353571(x) = A003415(A003961(x)) / A003557(A003961(x)) and A276086 is the primorial base exp-function.

Original entry on oeis.org

0, 1, 1, 8, 2, 11, 1, 10, 12, 71, 19, 92, 2, 13, 17, 86, 24, 107, 3, 16, 22, 101, 29, 122, 4, 19, 27, 116, 34, 137, 1, 14, 16, 103, 27, 136, 18, 131, 167, 886, 244, 1117, 29, 164, 222, 1051, 299, 1282, 40, 197, 277, 1216, 354, 1447, 51, 230, 332, 1381, 409, 1612, 2, 17, 21, 118, 32, 151, 25, 152, 202, 991, 279
Offset: 0

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Crossrefs

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A353571(n) = { my(s=A003961(n)); (A003415(s)/A003557(s)); };
    A353572(n) = A353571(A276086(n));

Formula

a(n) = A353571(A276086(n)).
a(n) = A342002(A276154(n)).
For all n >= 0, a(n) >= A342002(n).

A286629 a(n) = (A000040(n)-1) * A002110(n).

Original entry on oeis.org

2, 12, 120, 1260, 23100, 360360, 8168160, 174594420, 4908043140, 181151410440, 6016814703900, 267146572853160, 12170010541088400, 549475975930141260, 28284929999070604860, 1694636240813882325960, 111520100308944333066060, 7037302881564418258996200, 518649222371297625688019940, 39055858108868927267719077300
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Prime[n] - 1) Product[Prime[k], {k, n}], {n, 100}] (* Indranil Ghosh, Jul 07 2017 *)
  • PARI
    a(n) = (prime(n)-1)*prod(k=1, n, prime(k)); \\ Michel Marcus, Jul 07 2017
  • Python
    from sympy import prime, primorial
    def a002110(n): return 1 if n<1 else primorial(n)
    def a(n): return (prime(n) - 1)*a002110(n)
    print([a(n) for n in range(1, 21)]) # Indranil Ghosh, Jul 07 2017
    
  • Scheme
    (define (A286629 n) (* (- (A000040 n) 1) (A002110 n)))
    

Formula

a(n) = A006093(n) * A002110(n) = (A000040(n)-1) * A002110(n).
a(n) = A286630(n) - A002110(n).
a(n) = A276154(A061720(n-1)).
Previous Showing 11-15 of 15 results.