cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A299756 Triangle read by rows in which row n is the finite increasing sequence, or set of positive integers, with FDH number n.

Original entry on oeis.org

1, 2, 3, 4, 1, 2, 5, 1, 3, 6, 1, 4, 7, 2, 3, 8, 1, 5, 2, 4, 9, 10, 1, 6, 11, 3, 4, 2, 5, 1, 7, 12, 1, 2, 3, 13, 1, 8, 2, 6, 3, 5, 14, 1, 2, 4, 15, 1, 9, 2, 7, 1, 10, 4, 5, 3, 6, 16, 1, 11, 2, 8, 1, 3, 4, 17, 1, 2, 5, 18, 3, 7, 4, 6, 1, 12, 19, 2, 9, 20, 1, 13
Offset: 1

Views

Author

Gus Wiseman, Feb 18 2018

Keywords

Comments

Let f(n) = A050376(n) be the n-th number of the form p^(2^k) where p is prime and k >= 0. The FDH number of a set S is Product_{x in S} f(x).
Same as A299755 with rows reversed.

Examples

			Sequence of sets begins: {}, {1}, {2}, {3}, {4}, {1,2}, {5}, {1,3}, {6}, {1,4}, {7}, {2,3}, {8}, {1,5}, {2,4}, {9}, {10}, {1,6}, {11}, {3,4}, {2,5}, {1,7}, {12}, {1,2,3}, {13}.
		

Crossrefs

Programs

  • Mathematica
    FDfactor[n_]:=If[n===1,{},Sort[Join@@Cases[FactorInteger[n],{p_,k_}:>Power[p,Cases[Position[IntegerDigits[k,2]//Reverse,1],{m_}->2^(m-1)]]]]];
    nn=200;FDprimeList=Array[FDfactor,nn,1,Union];
    FDrules=MapIndexed[(#1->#2[[1]])&,FDprimeList];
    Join@@Table[FDfactor[n]/.FDrules,{n,60}]

A280996 Prime Matula-Goebel numbers of generalized Bethe trees.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 19, 23, 31, 53, 59, 67, 83, 97, 103, 127, 131, 227, 241, 277, 311, 331, 419, 431, 509, 563, 661, 691, 709, 719, 739, 1433, 1523, 1543, 1619, 1787, 1879, 2063, 2221, 2309, 2437, 2897, 3001, 3637, 3671, 3803, 4091, 4637, 4943, 5189, 5381
Offset: 1

Views

Author

Gus Wiseman, Jan 12 2017

Keywords

Comments

Also prime numbers p whose index pi(p) is the Matula-Goebel number of a planted achiral tree.
An alternative definition: prime(n) is in the sequence iff n is a perfect power of a prime number already in the sequence.

Examples

			a(n) = prime(Product_{i in y} a(i)) where y is the n-th partition in the following sequence, which spans all constant partitions: 1,2,11,3,4,111,22,5,1111,6,7,8,33,222,9,11111,44,...
		

Crossrefs

Programs

  • Mathematica
    nn=10000;
    BTQ[n_]:=Or[n===1,MatchQ[PrimePi/@FactorInteger[n][[All,1]],{_?BTQ}]];
    Prime/@Select[Range[PrimePi[nn]],BTQ]

Formula

a(1) = 2; a(n+1) = prime(A214577(n)).

A298126 Matula-Goebel numbers of rooted trees in which all outdegrees are even.

Original entry on oeis.org

1, 4, 14, 16, 49, 56, 64, 86, 106, 196, 224, 256, 301, 344, 371, 424, 454, 526, 622, 686, 784, 886, 896, 1024, 1154, 1204, 1376, 1484, 1589, 1696, 1816, 1841, 1849, 2104, 2177, 2279, 2386, 2401, 2488, 2744, 2809, 2846, 3101, 3136, 3238, 3544, 3584, 3986, 4039
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2018

Keywords

Examples

			Sequence of trees begins:
1   o
4   (oo)
14  (o(oo))
16  (oooo)
49  ((oo)(oo))
56  (ooo(oo))
64  (oooooo)
86  (o(o(oo)))
106 (o(oooo))
196 (oo(oo)(oo))
224 (ooooo(oo))
256 (oooooooo)
301 ((oo)(o(oo)))
344 (ooo(o(oo)))
371 ((oo)(oooo))
424 (ooo(oooo))
454 (o((oo)(oo)))
526 (o(ooo(oo)))
622 (o(oooooo))
686 (o(oo)(oo)(oo))
784 (oooo(oo)(oo))
886 (o(o(o(oo))))
896 (ooooooo(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    etQ[n_]:=Or[n===1,With[{m=primeMS[n]},EvenQ@Length@m&&And@@etQ/@m]];
    Select[Range[10000],etQ]

A317719 Numbers that are not powerful tree numbers.

Original entry on oeis.org

6, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a powerful tree number iff either n = 1 or n is a prime number whose prime index is a powerful tree number, or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all powerful tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of numbers that are not powerful tree numbers together with their Matula-Goebel trees begins:
   6: (o(o))
  10: (o((o)))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!powgoQ[#]&]

A317964 Prime numbers in the lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence (A304360).

Original entry on oeis.org

2, 5, 13, 17, 23, 31, 37, 43, 47, 61, 67, 73, 79, 89, 103, 107, 109, 113, 137, 149, 151, 163, 167, 179, 181, 193, 197, 223, 227, 233, 241, 251, 257, 263, 269, 271, 277, 281, 307, 317, 347, 349, 353, 359, 379, 383, 389, 397, 419, 421, 431, 433, 449, 457, 463, 467, 487, 499, 503, 509, 521, 523, 547
Offset: 1

Views

Author

N. J. A. Sloane, Aug 26 2018

Keywords

Comments

Also primes whose prime index is not in A304360, or is in A324696. A prime index of n is a number m such that prime(m) divides n. - Gus Wiseman, Mar 19 2019

Crossrefs

Programs

  • Maple
    count:= 0:
    P:= {}: A:= NULL:
    for n from 2 while count < 100 do
      pn:= numtheory:-factorset(n);
      if pn intersect P = {} then
        P:= P union {ithprime(n)};
        if isprime(n) then A:= A, n; count:= count+1 fi;
      fi
    od:
    A; # Robert Israel, Aug 26 2018
  • Mathematica
    aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,_}:>!aQ[PrimePi[p]]];
    Prime[Select[Range[100],aQ]] (* Gus Wiseman, Mar 19 2019 *)

A322385 2 and prime numbers whose prime index is a product of at least two not necessarily distinct prime numbers already in the sequence.

Original entry on oeis.org

2, 7, 19, 43, 53, 107, 131, 163, 227, 263, 311, 383, 443, 521, 577, 613, 719, 751, 881, 1021, 1193, 1301, 1307, 1423, 1619, 1667, 1699, 1993, 2003, 2161, 2309, 2311, 2437, 2539, 2693, 2939, 2969, 3167, 3209, 3671, 3767, 3779, 3833, 4423, 4481, 4597, 4871, 5147
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			We have 1993 = prime(301) = prime(7 * 43). Since 7 and 43 already belong to the sequence, so does 1993.
		

Crossrefs

Programs

  • Mathematica
    ppQ[n_]:=And[PrimeQ[n],!PrimeQ[PrimePi[n]],And@@ppQ/@First/@If[n==2,{},FactorInteger[PrimePi[n]]]];
    Select[Range[1000],ppQ]

A306719 Lexicographically earliest sequence containing 2 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.

Original entry on oeis.org

2, 4, 8, 10, 20, 22, 28, 30, 50, 58, 64, 72, 80, 82, 88, 108, 114, 134, 148, 172, 190, 204, 214, 230, 238, 244, 262, 272, 312, 322, 340, 344, 360, 362, 400, 410, 422, 442, 458, 498, 514, 552, 554, 568, 594, 610, 620, 640, 688, 712, 730, 750, 758, 784, 792, 814
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

Formula

a(n) = A324699(n) + 1.

A316521 Matula-Goebel numbers of rooted trees where all terminal rooted subtrees are either constant or strict.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 62, 64, 65, 66, 67, 69, 70, 73, 77, 78, 79, 81, 82, 83, 85, 86, 87, 91, 93, 94, 95, 97, 101
Offset: 1

Views

Author

Gus Wiseman, Jul 05 2018

Keywords

Comments

The following are equivalent.
1. n is in the sequence.
2. prime(n) is in the sequence.
3. n is a product of prime numbers that are already in the sequence and that are either all equal or all different.

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    go[n_]:=And[Or[SameQ@@primeMS[n],UnsameQ@@primeMS[n]],And@@go/@primeMS[n]]
    Select[Range[100],go]

A298363 Matula-Goebel numbers of rooted identity trees with thinning limbs.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 15, 22, 26, 30, 31, 33, 39, 55, 58, 62, 65, 66, 78, 87, 93, 94, 110, 127, 130, 141, 143, 145, 155, 158, 165, 174, 186, 195, 202, 235, 237, 254, 274, 282, 286, 290, 303, 310, 319, 330, 334, 341, 377, 381, 390, 395, 403, 411, 429, 435, 465
Offset: 1

Views

Author

Gus Wiseman, Jan 17 2018

Keywords

Comments

An unlabeled rooted tree has thinning limbs if its outdegrees are weakly decreasing from root to leaves.

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
6  (o(o))
10 (o((o)))
11 ((((o))))
15 ((o)((o)))
22 (o(((o))))
26 (o(o(o)))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
39 ((o)(o(o)))
55 (((o))(((o))))
58 (o(o((o))))
62 (o((((o)))))
65 (((o))(o(o)))
66 (o(o)(((o))))
78 (o(o)(o(o)))
87 ((o)(o((o))))
93 ((o)((((o)))))
94 (o((o)((o))))
		

Crossrefs

Programs

  • Mathematica
    MGtree[n_]:=If[n===1,{},MGtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    idthinQ[t_]:=And@@Cases[t,b_List:>UnsameQ@@b&&Length[b]>=Max@@Length/@b,{0,Infinity}];
    Select[Range[500],idthinQ[MGtree[#]]&]

Formula

Intersection of A276625 and A298303.

A317720 Numbers that are not uniform relatively prime tree numbers.

Original entry on oeis.org

9, 12, 18, 20, 21, 23, 24, 25, 27, 28, 37, 39, 40, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 60, 61, 63, 65, 68, 69, 71, 72, 73, 74, 75, 76, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 99, 103, 104, 107, 108, 111, 112, 115, 116, 117, 120, 121, 122, 124
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a uniform relatively prime tree number iff either n = 1 or n is a prime number whose prime index is a uniform relatively prime tree number, or n is a power of a squarefree number whose prime indices are relatively prime and are themselves uniform relatively prime tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of non-uniform tree numbers together with their Matula-Goebel trees begins:
   9: ((o)(o))
  12: (oo(o))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  23: (((o)(o)))
  24: (ooo(o))
  25: (((o))((o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  37: ((oo(o)))
  39: ((o)(o(o)))
  40: (ooo((o)))
  44: (oo(((o))))
  45: ((o)(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],GCD@@PrimePi/@FactorInteger[n][[All,1]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[200],!rupQ[#]&]
Previous Showing 31-40 of 40 results.