A292605
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).
Original entry on oeis.org
1, 1, 0, 19, 1, 0, 1513, 166, 1, 0, 315523, 52715, 1361, 1, 0, 136085041, 30543236, 1528806, 10916, 1, 0, 105261234643, 29664031413, 2257312622, 42421946, 87375, 1, 0, 132705221399353, 45011574747714, 4637635381695, 153778143100, 1156669095, 699042, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 19, 1, 0]
[3][ 1513, 166, 1, 0]
[4][ 315523, 52715, 1361, 1, 0]
[5][ 136085041, 30543236, 1528806, 10916, 1, 0]
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x):
A292605_row := proc(n) if n = 0 then return [1] fi;
add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292605_row(n) od;
-
# uses[A278073_row from A278073]
def A292605_row(n):
if n == 0: return [1]
L = A278073_row(n)
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292605_row(n))
A326477
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
-
CL := f -> PolynomialTools:-CoefficientList(f, x):
FL := s -> ListTools:-Flatten(s, 1):
StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
`if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
FL([seq(StirPochConv(2,n), n = 0..7)]);
-
P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
-
def StirPochConv(m, n):
z = var('z'); R = ZZ[x]
F = [i/m for i in (1..m-1)]
H = hypergeometric([], F, (z/m)^m)
P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
L = P.list()
S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
return expand(S).list()
for n in (0..6): print(StirPochConv(2, n))
A326585
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 4 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 36, 35, 0, 12046, 17820, 5775, 0, 16674906, 30263480, 16216200, 2627625, 0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625, 0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 36, 35]
[3] [0, 12046, 17820, 5775]
[4] [0, 16674906, 30263480, 16216200, 2627625]
[5] [0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625]
[6] [0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875]
A326587
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 3 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 11, 10, 0, 645, 924, 280, 0, 111563, 197802, 101640, 15400, 0, 42567981, 86271640, 57717660, 15415400, 1401400, 0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400
Offset: 0
Triangle starts:
0 [1]
1 [0, 1]
2 [0, 11, 10]
3 [0, 645, 924, 280]
4 [0, 111563, 197802, 101640, 15400]
5 [0, 42567981, 86271640, 57717660, 15415400, 1401400]
6 [0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400]
A327023
Ordered set partitions of the set {1, 2, ..., 3*n} with all block sizes divisible by 3, irregular triangle T(n, k) for n >= 0 and 0 <= k < A000041(n), read by rows.
Original entry on oeis.org
1, 1, 1, 20, 1, 168, 1680, 1, 440, 924, 55440, 369600, 1, 910, 10010, 300300, 1261260, 33633600, 168168000, 1, 1632, 37128, 48620, 1113840, 24504480, 17153136, 326726400, 2058376320, 34306272000, 137225088000
Offset: 0
Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1; 20]
[3] [1; 168; 1680]
[4] [1; 440, 924; 55440; 369600]
[5] [1; 910, 10010; 300300, 1261260; 33633600; 168168000]
[6] [1; 1632, 37128, 48620; 1113840, 24504480, 17153136; 326726400, 2058376320;
34306272000; 137225088000]
.
T(4, 1) = 440 because [9, 3] is the integer partition 3*P(4, 1) in the canonical order and there are 220 set partitions which have the shape [9, 3]. Finally, since the order of the sets is taken into account, one gets 2!*220 = 440.
A362585
Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k).
Original entry on oeis.org
1, 1, 1, 3, 6, 3, 13, 39, 39, 13, 75, 300, 450, 300, 75, 541, 2705, 5410, 5410, 2705, 541, 4683, 28098, 70245, 93660, 70245, 28098, 4683, 47293, 331051, 993153, 1655255, 1655255, 993153, 331051, 47293, 545835, 4366680, 15283380, 30566760, 38208450, 30566760, 15283380, 4366680, 545835
Offset: 0
[0] 1;
[1] 1, 1;
[2] 3, 6, 3;
[3] 13, 39, 39, 13;
[4] 75, 300, 450, 300, 75;
[5] 541, 2705, 5410, 5410, 2705, 541;
[6] 4683, 28098, 70245, 93660, 70245, 28098, 4683;
-
def TransOrdPart(m, n) -> list[int]:
@cached_function
def P(m: int, n: int):
R = PolynomialRing(ZZ, "x")
if n == 0: return R(1)
return R(sum(binomial(m * n, m * k) * P(m, n - k) * x
for k in range(1, n + 1)))
T = P(m, n)
def C(k) -> int:
return sum(T[j] * binomial(n, k) for j in range(n + 1))
return [C(k) for k in range(n+1)]
def A362585(n) -> list[int]: return TransOrdPart(1, n)
for n in range(6): print(A362585(n))
A362849
Triangle read by rows, T(n, k) = A243664(n) * binomial(n, k).
Original entry on oeis.org
1, 1, 1, 21, 42, 21, 1849, 5547, 5547, 1849, 426405, 1705620, 2558430, 1705620, 426405, 203374081, 1016870405, 2033740810, 2033740810, 1016870405, 203374081, 173959321557, 1043755929342, 2609389823355, 3479186431140, 2609389823355, 1043755929342, 173959321557
Offset: 0
[0] 1;
[1] 1, 1;
[2] 21, 42, 21;
[3] 1849, 5547, 5547, 1849;
[4] 426405, 1705620, 2558430, 1705620, 426405;
[5] 203374081, 1016870405, 2033740810, 2033740810, 1016870405, 203374081;
Cf.
A243664 (column 0 and main diagonal).
A326717
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 5 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 127, 126, 0, 255256, 381381, 126126, 0, 2979852651, 5447453786, 2956465512, 488864376, 0, 127156445503275, 264284637872750, 184292523727620, 52359004217520, 5194672859376
Offset: 0
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 127, 126]
[3] [0, 255256, 381381, 126126]
[4] [0, 2979852651, 5447453786, 2956465512, 488864376]
[5] [0, 127156445503275, 264284637872750, 184292523727620, 52359004217520, 5194672859376]
[6] [0, 15160169962750251082, 34544220081315967665, 28276496764200664980, 10634436034307385300, 1865368063755476280, 123378675083039376]
Comments