cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 112 results. Next

A303779 Restricted growth sequence transform of A278222(A303775(n)).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 4, 5, 6, 5, 3, 2, 7, 4, 7, 4, 6, 2, 4, 7, 4, 8, 4, 9, 10, 7, 11, 7, 3, 2, 11, 7, 4, 12, 13, 7, 4, 6, 5, 3, 8, 7, 11, 7, 14, 15, 8, 5, 4, 10, 8, 4, 12, 7, 8, 7, 8, 7, 13, 9, 15, 9, 13, 9, 13, 2, 16, 9, 4, 13, 9, 4, 17, 9, 4, 13, 7, 18, 13, 7, 4, 13, 9, 19, 15, 8, 4, 17, 9, 8, 7, 8, 9, 13, 15, 13, 7, 11, 7, 3, 11, 7, 12, 13, 7
Offset: 0

Views

Author

Antti Karttunen, May 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ Needs also code from A303775:
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278222(A303775(n-1)))),"b303779.txt");

Formula

For all i, j: a(i) = a(j) => A303780(i) = A303780(j).

A304088 Restricted growth sequence transform of A278222(A304083(n)).

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 2, 5, 6, 4, 3, 2, 7, 5, 7, 5, 8, 6, 4, 3, 2, 9, 7, 5, 10, 7, 5, 9, 7, 5, 11, 12, 7, 13, 9, 4, 3, 2, 8, 6, 7, 5, 14, 9, 7, 5, 13, 10, 7, 5, 10, 7, 14, 9, 7, 5, 15, 11, 15, 11, 16, 15, 11, 9, 7, 12, 8, 6, 4, 3, 2, 17, 14, 9, 7, 5, 18, 14, 9, 7, 5, 19, 13, 9, 7, 5, 20, 15, 11, 18, 13, 10, 7, 5, 21, 15, 11, 21, 15, 11, 17, 14, 9, 7, 5
Offset: 0

Views

Author

Antti Karttunen, May 06 2018

Keywords

Crossrefs

Cf. also A303779.

Programs

  • PARI
    \\ Needs also code from A304083:
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    write_to_bfile(0,rgs_transform(vector(65538,n,A278222(A304083(n-1)))),"b304088.txt");

Formula

For all i, j: a(i) = a(j) => A304089(i) = A304089(j).

A305431 Restricted growth sequence transform of A278222(A305295(n)), constructed from runlengths of 1-digits in base-3 representation of A245612(n).

Original entry on oeis.org

1, 2, 1, 1, 3, 4, 2, 3, 4, 1, 3, 1, 1, 2, 1, 2, 5, 6, 2, 7, 8, 4, 2, 1, 3, 7, 1, 4, 7, 7, 1, 1, 9, 1, 7, 10, 1, 11, 1, 2, 12, 8, 5, 7, 1, 1, 2, 8, 4, 7, 1, 7, 7, 8, 3, 2, 8, 7, 1, 7, 7, 1, 2, 1, 13, 14, 7, 11, 6, 1, 12, 14, 3, 11, 8, 8, 7, 15, 1, 16, 10, 17, 3, 17, 16, 3, 1, 15, 3, 1, 7, 7, 1, 1, 7, 6, 5, 7, 6, 1, 7, 11, 1, 8, 8, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2018

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A254049(n) = A048673((2*n)-1);
    A245612(n) = if(n<2,1+n,if(!(n%2),(3*A245612(n/2))-1,A254049(A245612((n-1)/2))));
    A289813(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==1, 1, 0)), 2); } \\ From A289813
    A305295(n) = A289813(A245612(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305431 = rgs_transform(vector(65538,n,A278222(A305295(n-1))));
    A305431(n) = v305431[1+n];

A305432 Restricted growth sequence transform of A278222(A291763(n)), constructed from runlengths of 2-digits in base-3 representation of A245612(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 3, 1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 4, 5, 2, 2, 2, 6, 4, 4, 2, 7, 1, 2, 1, 3, 2, 2, 6, 8, 3, 9, 2, 4, 6, 2, 4, 3, 4, 6, 4, 8, 1, 4, 4, 4, 1, 6, 2, 3, 3, 2, 2, 2, 2, 4, 2, 4, 1, 2, 2, 9, 8, 8, 6, 6, 1, 9, 10, 6, 4, 4, 4, 11, 2, 2, 2, 8, 2, 4, 7, 8, 2, 6, 4, 6, 6, 8, 4, 2, 2, 4, 1, 6, 9, 4, 6, 12, 2, 6, 7
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2018

Keywords

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A254049(n) = A048673((2*n)-1);
    A245612(n) = if(n<2,1+n,if(!(n%2),(3*A245612(n/2))-1,A254049(A245612((n-1)/2))));
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291763(n) = A289814(A245612(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v305432 = rgs_transform(vector(65538,n,A278222(A291763(n-1))));
    A305432(n) = v305432[1+n];

A324345 Lexicographically earliest positive sequence such that a(i) = a(j) => A005811(i) = A005811(j) and A278222(i) = A278222(j), for all i, j >= 0.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 7, 3, 5, 8, 9, 6, 9, 10, 11, 3, 5, 8, 9, 8, 12, 13, 14, 6, 9, 13, 15, 10, 14, 16, 17, 3, 5, 8, 9, 8, 12, 13, 14, 8, 12, 18, 19, 13, 19, 20, 21, 6, 9, 13, 15, 13, 19, 22, 23, 10, 14, 20, 23, 16, 21, 24, 25, 3, 5, 8, 9, 8, 12, 13, 14, 8, 12, 18, 19, 13, 19, 20, 21, 8, 12, 18, 19, 18, 26, 27, 28, 13, 19, 27, 29, 20, 28, 30, 31, 6, 9, 13, 15, 13, 19
Offset: 0

Views

Author

Antti Karttunen, Feb 24 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A005811(n), A278222(n)], or equally, of [A005811(n), A286622(n)].
For all i, j >= 1:
a(i) = a(j) => A033264(i) = A033264(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005811(n) = hammingweight(bitxor(n, n>>1)); \\ From A005811
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    Aux324345(n) = [A005811(n), A278222(n)];
    v324345 = rgs_transform(vector(1+up_to,n,Aux324345(n-1)));
    A324345(n) = v324345[1+n];

Formula

a(2^n) = 3 for all n >= 1.

A324531 Lexicographically earliest sequence such that for all i, j >= 1, a(i) = a(j) => f(i) = f(j), where f(n) = [A278222(n), A318458(n)] for all other numbers, except f(1) = 0.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 9, 11, 12, 2, 4, 13, 9, 14, 15, 16, 17, 10, 18, 19, 20, 21, 17, 22, 23, 2, 4, 7, 9, 24, 15, 16, 17, 25, 15, 26, 27, 28, 29, 30, 31, 10, 18, 32, 33, 34, 27, 35, 36, 37, 38, 39, 40, 41, 31, 42, 43, 2, 4, 44, 9, 7, 15, 45, 17, 46, 15, 47, 27, 48, 27, 49, 31, 50, 51, 51, 27, 52, 53, 54, 55, 56, 27, 57, 58, 59, 55, 60, 61, 10, 9, 48
Offset: 1

Views

Author

Antti Karttunen, Mar 05 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A324532(i) = A324532(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ Modified from code of M. F. Hasler
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A278222(n) = A046523(A005940(1+n));
    A318458(n) = bitand(n,sigma(n)-n);
    Aux324531(n) = if(1==n,0,[A278222(n), A318458(n)]);
    v324531 = rgs_transform(vector(up_to,n,Aux324531(n)));
    A324531(n) = v324531[n];

Formula

For n >= 1, a(2^n) = 2.

A336154 Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(1+i) = A007814(1+j) and A278222(i) = A278222(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 4, 7, 8, 5, 9, 10, 11, 2, 4, 7, 8, 7, 12, 13, 14, 5, 9, 13, 15, 10, 16, 17, 18, 2, 4, 7, 8, 7, 12, 13, 14, 7, 12, 19, 20, 13, 21, 22, 23, 5, 9, 13, 15, 13, 21, 24, 25, 10, 16, 22, 26, 17, 27, 28, 29, 2, 4, 7, 8, 7, 12, 13, 14, 7, 12, 19, 20, 13, 21, 22, 23, 7, 12, 19, 20, 19, 30, 31, 32, 13, 21, 31, 33, 22, 34, 35, 36, 5, 9, 13, 15, 13, 21, 24, 25, 13, 21
Offset: 1

Views

Author

Antti Karttunen, Jul 11 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A007814(1+n), A278222(n)]. Note that A007814(1+n) gives the number of trailing 1-bits in the binary expansion of n.
For all i, j: A324400(i) = A324400(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007814(n) = valuation(n,2);
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    Aux336154(n) = [A007814(1+n), A278222(n)];
    v336154 = rgs_transform(vector(up_to, n, Aux336154(n)));
    A336154(n) = v336154[n];

A336313 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A336125(i)) = A278222(A336125(j)) for all i, j >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 2, 2, 4, 3, 2, 2, 2, 3, 3, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 3, 4, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 3, 3, 2, 2, 5, 2, 2, 4, 5, 2, 2, 2, 3, 3, 3, 2, 5, 2, 2, 3, 3, 3, 2, 2, 3, 6, 2, 2, 5, 2, 2, 3, 3, 2, 2, 3, 3, 3, 2, 2, 5, 2, 2, 4, 3, 2, 2, 2, 3, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 17 2020

Keywords

Comments

Restricted growth sequence transform of A278222(A336125(n)).
For all i, j: A336311(i) = A336311(j) => a(i) = a(j) => A336123(i) = A336123(j).

Crossrefs

Programs

  • PARI
    \\ Needs also code from A336124:
    up_to = 1024; \\ 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A253553(n) = if(n<=2,1,my(f=factor(n), k=#f~); if(f[k,2]>1,f[k,2]--,f[k,1] = precprime(f[k,1]-1)); factorback(f));
    A336125(n) = if(n<=2,n-1,(1==A336124(n))+(2*A336125(A253553(n))));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; \\ From A005940
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    v336313 = rgs_transform(vector(up_to,n,A278222(A336125(n))));
    A336313(n) = v336313[n];

A336394 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(i) = A278222(j) and A331410(i) = A331410(j), for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 3, 5, 2, 5, 4, 6, 1, 7, 3, 8, 3, 9, 5, 10, 2, 11, 5, 12, 4, 13, 6, 14, 1, 7, 7, 8, 3, 15, 8, 16, 3, 17, 9, 18, 5, 19, 10, 20, 2, 5, 11, 21, 5, 19, 12, 22, 4, 13, 13, 22, 6, 20, 14, 23, 1, 24, 7, 11, 7, 17, 8, 16, 3, 25, 15, 26, 8, 18, 16, 27, 3, 15, 17, 18, 9, 28, 18, 29, 5, 26, 19, 30, 10, 31, 20, 32, 2, 8, 5, 21, 11
Offset: 1

Views

Author

Antti Karttunen, Aug 10 2020

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A278222(n), A331410(n)].
For all i, j: A324400(i) = A324400(j) => A003602(i) = A003602(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1]))));
    Aux336394(n) = [A278222(n), A331410(n)];
    v336394 = rgs_transform(vector(up_to, n, Aux336394(n)));
    A336394(n) = v336394[n];

A340382 Lexicographically earliest infinite sequence such that a(i) = a(j) => A278222(A291759(i)) = A278222(A291759(j)), for all i, j >= 1.

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 2, 4, 1, 3, 2, 2, 1, 2, 1, 2, 1, 4, 2, 4, 3, 5, 2, 4, 2, 5, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 3, 4, 2, 3, 1, 4, 4, 6, 2, 6, 1, 7, 2, 4, 2, 4, 1, 6, 2, 4, 2, 2, 4, 3, 1, 2, 3, 3, 1, 2, 1, 6, 2, 4, 3, 4, 2, 2, 4, 4, 2, 2, 2, 6, 5, 4, 2, 4, 1, 4, 1, 8, 1, 4, 3, 9, 2, 6, 3, 6, 2, 6, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2021

Keywords

Crossrefs

Cf. A340377 (positions of ones).
Cf. also A305302.

Programs

  • PARI
    up_to = 65537;
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A048673(n) = (A003961(n)+1)/2;
    A289814(n) = { my (d=digits(n, 3)); fromdigits(vector(#d, i, if (d[i]==2, 1, 0)), 2); } \\ From A289814
    A291759(n) = A289814(A048673(n));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278222(n) = A046523(A005940(1+n));
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    v340382 = rgs_transform(vector(up_to,n,A278222(A291759(n))));
    A340382(n) = v340382[n];
Previous Showing 41-50 of 112 results. Next