cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A284499 Expansion of Product_{k>=0} (1 - x^(7*k+1)) in powers of x.

Original entry on oeis.org

1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, -1, 2, -1, 0, 0, 0, 0, -1, 3, -2, 0, 0, 0, 0, -1, 3, -3, 1, 0, 0, 0, -1, 4, -4, 1, 0, 0, 0, -1, 4, -5, 2, 0, 0, 0, -1, 5, -7, 3, 0, 0, 0, -1, 5, -8, 5, -1, 0, 0, -1, 6, -10
Offset: 0

Views

Author

Seiichi Manyama, Mar 28 2017

Keywords

Crossrefs

Cf. Product_{k>=0} (1 - x^(7*k+m)): this sequence (m=1), A284500 (m=2), A284501 (m=3), A284502 (m=4), A284503 (m=5), A284504 (m=6).
Cf. A280457.

Programs

  • Maple
    G:= mul(1-x^(7*k+1),k=0..100/7):
    S:= series(G,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Mar 29 2017
  • Mathematica
    CoefficientList[Series[Product[1 - x^(7k + 1), {k, 0, 100}], {x, 0, 100}], x] (* Indranil Ghosh, Mar 28 2017 *)
  • PARI
    Vec(prod(k=0, 100, 1 - x^(7*k + 1)) + O(x^101)) \\ Indranil Ghosh, Mar 28 2017

Formula

a(n) = -(1/n)*Sum_{k=1..n} A284099(k)*a(n-k), a(0) = 1.

A281459 Expansion of Product_{k>=1} (1 + x^(7*k-1))*(1 + x^(7*k-6)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 1, 2, 3, 3, 2, 1, 0, 1, 3, 5, 5, 3, 1, 0, 2, 5, 7, 7, 5, 2, 1, 3, 7, 11, 11, 7, 3, 2, 5, 11, 15, 15, 11, 5, 3, 7, 15, 22, 22, 15, 7, 5, 11, 22, 30, 30, 22, 12, 8, 15, 30, 42, 42, 30, 16, 12, 23, 42, 56
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 22 2017

Keywords

Comments

Convolution of A281245 and A280457.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(7*k-1))*(1 + x^(7*k-6)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(sqrt(2*n/21)*Pi) / (2^(5/4)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(84*sqrt(42)) - 3*sqrt(21/2)/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Jan 22 2017, extended Jan 24 2017

A284095 Expansion of Product_{k>=0} (1 + x^(8*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 2, 0, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 4, 1, 0, 0, 0, 0, 1, 4, 5, 2, 0, 0, 0, 0, 1, 5, 7, 3, 0, 0, 0, 0, 1, 5, 8, 5, 1, 0, 0, 0
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 8.

Crossrefs

Cf. Product_{k>=0} (1 + x^(m*k+1)): A261612 (m=3), A169975 (m=4), A280454 (m=5), A280456 (m=6), A280457 (m=7), this sequence (m=8).

Programs

  • Mathematica
    CoefficientList[Series[Product[(1 + x^(8*k + 1)) , {k, 0, 91}], {x, 0, 91}], x] (* Indranil Ghosh, Mar 20 2017 *)
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 8] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Mar 20 2017 *)
  • PARI
    Vec(prod(k=0, 91, (1 + x^(8*k + 1))) + O(x^92)) \\ Indranil Ghosh, Mar 20 2017

Formula

a(n) ~ exp(sqrt(n/6)*Pi/2) / (2^(15/8) * 3^(1/4) * n^(3/4)) * (1 + (11*Pi/(384*sqrt(6)) - 3*sqrt(3/2)/(2*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017
G.f.: Sum_{k>=0} x^(k*(4*k - 3)) / Product_{j=1..k} (1 - x^(8*j)). - Ilya Gutkovskiy, Nov 24 2020
Previous Showing 11-13 of 13 results.