cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A318847 Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(6) = 6 tree-partitions of {1,1,2}:
  (112)
  ((1)(12))
  ((2)(11))
  ((1)(1)(2))
  ((1)((1)(2)))
  ((2)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[allmsptrees[nrmptn[n]]],{n,20}]

Formula

a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A319118 Number of multimin tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 8, 1, 2, 2, 24, 1, 6, 1, 8, 2, 2, 1, 42, 2, 2, 6, 8, 1, 8, 1, 112, 2, 2, 2, 38, 1, 2, 2, 42, 1, 8, 1, 8, 8, 2, 1, 244, 2, 6, 2, 8, 1, 24, 2, 42, 2, 2, 1, 58, 1, 2, 8, 568, 2, 8, 1, 8, 2, 8, 1, 268, 1, 2, 6, 8, 2, 8, 1, 244, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.

Examples

			The a(12) = 8 multimin tree-factorizations:
  12,
  (2*6), (4*3), (6*2), (2*2*3),
  (2*(2*3)), ((2*2)*3), ((2*3)*2).
Or as series-reduced plane trees of multisets:
  112,
  (1,12), (11,2), (12,1), (1,1,2),
  (1,(1,2)), ((1,1),2), ((1,2),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[mmftrees[n]],{n,100}]

Formula

a(prime^n) = A118376(n).
a(product of n distinct primes) = A005804(n).

A319137 Number of strict planar branching factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 9, 1, 3, 3, 7, 1, 9, 1, 9, 3, 3, 1, 37, 1, 3, 3, 9, 1, 25, 1, 21, 3, 3, 3, 57, 1, 3, 3, 37, 1, 25, 1, 9, 9, 3, 1, 161, 1, 9, 3, 9, 1, 37, 3, 37, 3, 3, 1, 153, 1, 3, 9, 75, 3, 25, 1, 9, 3, 25, 1, 345, 1, 3, 9, 9, 3, 25, 1, 161
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A strict planar branching factorization of n is either the number n itself or a sequence of at least two strict planar branching factorizations, one of each factor in a strict ordered factorization of n.

Examples

			The a(12) = 9 trees:
  12,
  (2*6), (3*4), (4*3),(6*2),
  (2*(2*3)), (2*(3*2)), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    sotfs[n_]:=Prepend[Join@@Table[Tuples[sotfs/@f],{f,Select[ordfacs[n],And[Length[#]>1,UnsameQ@@#]&]}],n];
    Table[Length[sotfs[n]],{n,100}]

Formula

a(prime^n) = A319123(n + 1).
a(product of n distinct primes) = A319122(n).

A319138 Number of complete strict planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 4, 1, 2, 2, 0, 1, 4, 1, 4, 2, 2, 1, 8, 0, 2, 0, 4, 1, 18, 1, 0, 2, 2, 2, 28, 1, 2, 2, 8, 1, 18, 1, 4, 4, 2, 1, 16, 0, 4, 2, 4, 1, 8, 2, 8, 2, 2, 1, 84, 1, 2, 4, 0, 2, 18, 1, 4, 2, 18, 1, 112, 1, 2, 4, 4, 2, 18, 1, 16, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A strict planar branching factorization of n is either the number n itself or a sequence of at least two strict planar branching factorizations, one of each factor in a strict ordered factorization of n. A strict planar branching factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 4 trees: (2*(2*3)), (2*(3*2)), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    sotfs[n_]:=Prepend[Join@@Table[Tuples[sotfs/@f],{f,Select[ordfacs[n],And[Length[#]>1,UnsameQ@@#]&]}],n];
    Table[Length[Select[sotfs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A000007(n - 1).
a(product of n distinct primes) = A032037(n).

A319239 Positions of nonzero terms in A316441, the list of coefficients in the expansion of Product_{n > 1} 1/(1 + 1/n^s).

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 13, 16, 17, 19, 23, 24, 27, 29, 30, 31, 32, 36, 37, 40, 41, 42, 43, 47, 53, 54, 56, 59, 60, 61, 64, 66, 67, 70, 71, 73, 78, 79, 81, 83, 84, 88, 89, 90, 96, 97, 100, 101, 102, 103, 104, 105, 107, 109, 110, 113, 114, 120, 125, 126, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Sep 15 2018

Keywords

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Join@@Position[Table[Sum[(-1)^Length[f],{f,facs[n]}],{n,100}],_Integer?(Abs[#]>0&)]

A316789 Number of same-tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

A constant factorization of n is a finite nonempty constant multiset of positive integers greater than 1 with product n. Constant factorizations correspond to perfect divisors (A089723). A same-tree-factorization of n is either (case 1) the number n itself or (case 2) a finite sequence of two or more same-tree-factorizations, one of each factor in a constant factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(64) = 14 same-tree-factorizations:
  64
  (8*8)
  (4*4*4)
  (8*(2*2*2))
  ((2*2*2)*8)
  (4*4*(2*2))
  (4*(2*2)*4)
  ((2*2)*4*4)
  (2*2*2*2*2*2)
  (4*(2*2)*(2*2))
  ((2*2)*4*(2*2))
  ((2*2)*(2*2)*4)
  ((2*2*2)*(2*2*2))
  ((2*2)*(2*2)*(2*2))
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[a[n^(1/d)]^d,{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, a(z^(e/d))^d)))} \\ Andrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = x^y, y > 1} a(x)^y.
a(2^n) = A281145(n).

A316790 Number of orderless same-tree-factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2018

Keywords

Comments

A constant factorization of n is a finite nonempty constant multiset of positive integers greater than 1 with product n. Constant factorizations correspond to perfect divisors (A089723). An orderless same-tree-factorization of n is either (case 1) the number n itself or (case 2) a finite multiset of two or more orderless same-tree-factorizations, one of each factor in a constant factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018

Examples

			The a(64) = 9 orderless same-tree-factorizations:
  64
  (8*8)
  (4*4*4)
  (4*4*(2*2))
  (8*(2*2*2))
  (2*2*2*2*2*2)
  (4*(2*2)*(2*2))
  ((2*2*2)*(2*2*2))
  ((2*2)*(2*2)*(2*2))
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=1+Sum[Binomial[a[n^(1/d)]+d-1,d],{d,Rest[Divisors[GCD@@FactorInteger[n][[All,2]]]]}]
    Array[a,100]
  • PARI
    a(n)={my(z, e=ispower(n,,&z)); 1 + if(e, sumdiv(e, d, if(d>1, binomial(a(z^(e/d)) + d - 1, d))))} \\ Andrew Howroyd, Nov 18 2018

Formula

a(n) = 1 + Sum_{n = x^y, y > 1} binomial(a(x) + y - 1, y).
a(2^n) = A289078(n).

A318577 Number of complete multimin tree-factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 11, 1, 3, 1, 4, 1, 1, 1, 19, 1, 1, 3, 4, 1, 4, 1, 45, 1, 1, 1, 17, 1, 1, 1, 19, 1, 4, 1, 4, 4, 1, 1, 96, 1, 3, 1, 4, 1, 11, 1, 19, 1, 1, 1, 26, 1, 1, 4, 197, 1, 4, 1, 4, 1, 4, 1, 104, 1, 1, 3, 4, 1, 4, 1, 96, 11, 1, 1, 26, 1, 1, 1, 19, 1, 19, 1, 4, 1, 1, 1, 501, 1, 3, 4, 17
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of at least two multimin tree-factorizations, one of each factor in a multimin factorization of n. A multimin tree-factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 4 trees are (2*2*3), (2*(2*3)), ((2*3)*2), ((2*2)*3).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Length[Select[mmftrees[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A001003(n - 1).
a(product of n distinct primes) = A000311(n).

A319119 Number of multimin tree-factorizations of Heinz numbers of integer partitions of n.

Original entry on oeis.org

1, 3, 9, 37, 173, 921, 5185, 30497, 184469, 1140413, 7170085, 45704821
Offset: 1

Views

Author

Gus Wiseman, Sep 10 2018

Keywords

Comments

A multimin factorization of n is an ordered factorization of n into factors greater than 1 such that the sequence of minimal primes dividing each factor is weakly increasing. A multimin tree-factorization of n is either the number n itself or a sequence of multimin tree-factorizations, one of each factor in a multimin factorization of n with at least two factors.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The a(3) = 9 multimin tree-factorizations:
  5, 6, 8,
  (2*3), (2*4), (4*2), (2*2*2),
  (2*(2*2)), ((2*2)*2).
Or as series-reduced plane trees of multisets:
  3, 12, 111,
  (1,2), (1,11), (11,1), (1,1,1),
  (1,(1,1)), ((1,1),1).
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    mmftrees[n_]:=Prepend[Join@@(Tuples[mmftrees/@#]&/@Select[Join@@Permutations/@Select[facs[n],Length[#]>1&],OrderedQ[FactorInteger[#][[1,1]]&/@#]&]),n];
    Table[Sum[Length[mmftrees[k]],{k,Times@@Prime/@#&/@IntegerPartitions[n]}],{n,7}]

Extensions

a(11)-a(12) from Robert Price, Sep 14 2018

A319136 Number of complete planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 9, 1, 2, 2, 11, 1, 9, 1, 9, 2, 2, 1, 44, 1, 2, 3, 9, 1, 18, 1, 45, 2, 2, 2, 66, 1, 2, 2, 44, 1, 18, 1, 9, 9, 2, 1, 225, 1, 9, 2, 9, 1, 44, 2, 44, 2, 2, 1, 132, 1, 2, 9, 197, 2, 18, 1, 9, 2, 18, 1, 450, 1, 2, 9, 9, 2, 18, 1, 225
Offset: 1

Views

Author

Gus Wiseman, Sep 11 2018

Keywords

Comments

A planar branching factorization of n is either the number n itself or a sequence of at least two planar branching factorizations, one of each factor in an ordered factorization of n. A planar branching factorization is complete if the leaves are all prime numbers.

Examples

			The a(12) = 9 trees:
  (2*2*3), (2*3*2), (3*2*2),
  (2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
		

Crossrefs

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
    Table[Length[Select[otfs[n],FreeQ[#,_Integer?(!PrimeQ[#]&)]&]],{n,100}]

Formula

a(prime^n) = A001003(n - 1).
a(product of n distinct primes) = A032037(n).
Previous Showing 21-30 of 35 results. Next