A318849
Number of orderless tree-partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 11, 8, 27, 20, 30, 38, 96, 74, 114, 58, 308, 234, 1052, 176, 509, 278, 3648, 374, 600, 1076, 1760, 814, 13003, 1306, 47006, 612, 2226, 4200, 3094, 2914, 172605, 16588, 9814, 2168, 640662, 6998, 2402388, 3698, 11496, 65936, 9082538, 4914, 17996
Offset: 1
The a(7) = 11 orderless tree-partitions of {1,1,1,1}:
(1111)
((1)(111))
((11)(11))
((1)(1)(11))
((1)((1)(11)))
((11)((1)(1)))
((1)(1)(1)(1))
((1)((1)(1)(1)))
((1)(1)((1)(1)))
((1)((1)((1)(1))))
(((1)(1))((1)(1)))
Cf.
A000311,
A001055,
A196545,
A292504,
A292505,
A305936,
A316655,
A318762,
A318812,
A318813,
A318847.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
olmsptrees[m_]:=Prepend[Union@@Table[Sort/@Tuples[olmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Length[olmsptrees[nrmptn[n]]],{n,15}]
A318846
Number of balanced reduced multisystems whose atoms cover an initial interval of positive integers with multiplicities equal to the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 6, 4, 15, 11, 20, 21, 90, 51, 80, 32, 468, 166, 2910, 124, 521, 277, 20644, 266, 621, 1761, 1866, 841, 165874, 1374, 1484344, 436, 3797, 12741, 5383, 3108, 14653890, 103783, 31323, 2294, 158136988, 12419, 1852077284, 6382, 20786, 939131, 23394406084
Offset: 1
The a(12) = 21 multisystems on {1,1,2,3} (commas elided):
{1123} {{1}{123}} {{1}{1}{23}} {{{1}}{{1}{23}}}
{{2}{113}} {{1}{2}{13}} {{{23}}{{1}{1}}}
{{3}{112}} {{1}{3}{12}} {{{1}}{{2}{13}}}
{{11}{23}} {{2}{3}{11}} {{{2}}{{1}{13}}}
{{12}{13}} {{{13}}{{1}{2}}}
{{{1}}{{3}{12}}}
{{{3}}{{1}{12}}}
{{{12}}{{1}{3}}}
{{{2}}{{3}{11}}}
{{{3}}{{2}{11}}}
{{{11}}{{2}{3}}}
Cf.
A001055,
A002846,
A005121,
A181821,
A213427,
A281118,
A281119,
A305936,
A318762,
A318812,
A318813.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
tmsp[m_]:=Prepend[Join@@Table[tmsp[c],{c,Select[mps[m],1
A318848
Number of complete tree-partitions of a multiset whose multiplicities are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 5, 4, 12, 9, 12, 17, 34, 29, 44, 26, 92, 90, 277, 68, 171, 93, 806, 144, 197, 309, 581, 269, 2500, 428, 7578, 236, 631, 1025, 869, 954, 24198, 3463, 2402, 712, 75370, 1957, 243800, 1040, 3200, 11705, 776494, 1612, 4349, 2358, 8862, 3993, 2545777
Offset: 1
The a(12) = 17 complete tree-partitions of {1,1,2,3} with the leaves (x) replaced with just x:
(1(1(23)))
(1(2(13)))
(1(3(12)))
(2(1(13)))
(2(3(11)))
(3(1(12)))
(3(2(11)))
((11)(23))
((12)(13))
(1(123))
(2(113))
(3(112))
(11(23))
(12(13))
(13(12))
(23(11))
(1123)
Cf.
A000311,
A001055,
A196545,
A281118,
A281119,
A305936,
A318762,
A318812,
A318813,
A318846,
A318847,
A318849.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
Table[Length[Select[allmsptrees[nrmptn[n]],FreeQ[#,{?AtomQ,_}]&]],{n,20}]
A330727
Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2
Triangle begins:
{}
1
1
1 1
1 2
1 3 2
1 3
1 7 7
1 5 5
1 5 9 5
1 9 11
1 9 28 36 16
1 10 24 16
1 14 38 27
1 13 18
1 13 69 160 164 61
1 24 79 62
For example, row n = 12 counts the following multisystems:
{1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}}
{{1,1},{2,3}} {{{1,1}},{{2},{3}}}
{{1,2},{1,3}} {{{1}},{{2},{1,3}}}
{{2},{1,1,3}} {{{1,2}},{{1},{3}}}
{{3},{1,1,2}} {{{1}},{{3},{1,2}}}
{{1},{1},{2,3}} {{{1,3}},{{1},{2}}}
{{1},{2},{1,3}} {{{2}},{{1},{1,3}}}
{{1},{3},{1,2}} {{{2}},{{3},{1,1}}}
{{2},{3},{1,1}} {{{2,3}},{{1},{1}}}
{{{3}},{{1},{1,2}}}
{{{3}},{{2},{1,1}}}
Final terms in each row are
A330728.
Column k = 3 is
A318284(n) - 2 for n > 2.
Cf.
A000111,
A002846,
A005121,
A292504,
A318812,
A318813,
A318847,
A318848,
A318849,
A330475,
A330666,
A330935.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
Showing 1-4 of 4 results.
Comments