cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A126858 Coefficients in quasimodular form F_2(q) of level 1 and weight 6.

Original entry on oeis.org

0, 0, 1, 8, 30, 80, 180, 336, 620, 960, 1590, 2200, 3416, 4368, 6440, 7920, 11160, 13056, 18333, 20520, 27860, 31360, 41052, 44528, 59760, 62400, 80990, 87120, 109872, 113680, 147960, 148800, 188976, 196416, 240210, 243040, 311910, 303696, 376580, 385840
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 2007

Keywords

Comments

This is also (5*E_2^3 - 3*E_2*E_4 - 2*E_6)/51840, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively. - N. J. A. Sloane, Feb 06 2017
This is also ((q*(d/dq)E_4)/240 + q*(d/dq)(q*(d/dq)E_2)/24)/6, where E_2 and E_4 are the Eisenstein series shown in A006352 and A004009, respectively. - Seiichi Manyama, Feb 08 2017

Examples

			F_2(q) = q^2 + 8*q^3 + 30*q^4 + 80*q^5 + 180*q^6 + 336*q^7 + 620*q^8 + 960*q^9 + 1590*q^10 + 2200*q^11 + ...
		

Crossrefs

Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A145094 (q*(d/dq)E_4), A281372, A282097, A282154 (-q*(d/dq)(q*(d/dq)E_2)).

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    series((5*e2^3-3*e2*e4-2*e6)/51840,q,M+1);
    seriestolist(%); # from N. J. A. Sloane, Feb 06 2017
  • Mathematica
    terms = 40; Ei[n_] = 1 - (2 n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, 1, terms}]; S = 5 Ei[2]^3 - 3 Ei[2] Ei[4] - 2 Ei[6]; CoefficientList[S + O[x]^terms, x]/SeriesCoefficient[S, {x, 0, 2}] (* Jean-François Alcover, Feb 28 2018 *)
  • PARI
    {a(n) = local(L1, L2, L3); if( n<0, 0, L1 = 1 - 24 * sum( k = 1, n, sigma(k) * x^k, x * O(x^n)); L2 = x * L1'; L3 = x * L2'; polcoeff( (L1 * L2 - L3) / 720, n))} /* Michael Somos, Jan 08 2012 */

Formula

F_2(q) = (5*E(2)^3-3*E(2)*E(4)-2*E(6))/51840 where E(k) is the normalized Eisenstein series of weight k (cf. A006352, etc.).
Expansion of (L1 * L2 - L3) / 720 where L1 = E2 (A006352), L2 = q * dL1/dq, L3 = q * dL2/dq in powers of q where E2 is an Eisenstein series. - Michael Somos, Jan 08 2012
a(n) = (A145094(n)/240 - A282154(n)/24)/6 = (A281372(n) - A282097(n))/6. - Seiichi Manyama, Feb 08 2017

A281371 Coefficients in q-expansion of (E_2*E_4 - E_6)^2/518400, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 0, 1, 36, 492, 3608, 18828, 74760, 250352, 717984, 1866558, 4365580, 9635472, 19639032, 38559416, 71222616, 128258496, 219619968, 370366101, 597550068, 955638824, 1471571136, 2253173892, 3335433368, 4932972864, 7064391840, 10133162774, 14128072488, 19743952032, 26864847352
Offset: 0

Views

Author

N. J. A. Sloane, Feb 04 2017

Keywords

Comments

This is (up to a constant factor), the numerator of the expression phi defined in Cohn (2017) (see phi on page 114 of the Notices version).

Crossrefs

Cf. A006352, A004009, A013973, A145094, A281372 (the square root).

Programs

  • Maple
    with(numtheory); M:=100;
    E := proc(k) local n, t1; global M;
    t1 := 1-(2*k/bernoulli(k))*add(sigma[k-1](n)*q^n, n=1..M+1);
    series(t1, q, M+1); end;
    e2:=E(2); e4:=E(4); e6:=E(6);
    t1:=series((e2*e4-e6)^2/518400,q,M+1);
    seriestolist(t1);
  • Mathematica
    terms = 30;
    E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
    E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}];
    E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}];
    (E2[x]*E4[x] - E6[x])^2/518400 + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Feb 27 2018 *)

A282548 Expansion of phi_{12, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 4098, 531444, 16785412, 244140630, 2177857512, 13841287208, 68753047560, 282431130813, 1000488301740, 3138428376732, 8920506494928, 23298085122494, 56721594978384, 129747072969720, 281612482805776, 582622237229778, 1157402774071674
Offset: 0

Views

Author

Seiichi Manyama, Feb 18 2017

Keywords

Comments

Multiplicative because A013959 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), this sequence (phi_{12, 1}).
Cf. A282549 (E_2*E_4^3), A282576 (E_2*E_6^2), A058550 (E_14).
Cf. A013670.

Programs

  • Mathematica
    Table[n * DivisorSigma[11, n], {n, 0, 18}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 11)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013959(n) for n > 0.
a(n) = (441*A282549(n) + 250*A282576(n) - 691*A058550(n))/65520.
Sum_{k=1..n} a(k) ~ zeta(12) * n^13 / 13. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(11*e+11)-1)/(p^11-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-12). (End)

A282597 Expansion of phi_{14, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 16386, 4782972, 268468228, 6103515630, 78373779192, 678223072856, 4398583447560, 22876806803877, 100012207113180, 379749833583252, 1284076017413616, 3937376385699302, 11113363271818416, 29192944359852360, 72066391204823056, 168377826559400946
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2017

Keywords

Comments

Multiplicative because A013961 is. - Andrew Howroyd, Jul 25 2018

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), this sequence (phi_{14, 1}).
Cf. A282012 (E_4^4), A282287 (E_4*E_6^2), A282596 (E_2*E_4^2*E_6).
Cf. A013672.

Programs

  • Mathematica
    Table[n * DivisorSigma[13, n], {n, 0, 17}] (* Amiram Eldar, Sep 06 2023 *)
  • PARI
    a(n) = if(n < 1, 0, n*sigma(n, 13)) \\ Andrew Howroyd, Jul 25 2018

Formula

a(n) = n*A013961(n) for n > 0.
a(n) = (3*A282012(n) + 4*A282287(n) - 7*A282596(n))/144.
Sum_{k=1..n} a(k) ~ zeta(14) * n^15 / 15. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(13*e+13)-1)/(p^13-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-14). (End)

A356126 a(n) = Sum_{k=1..n} k * sigma_3(k).

Original entry on oeis.org

1, 19, 103, 395, 1025, 2537, 4945, 9625, 16438, 27778, 42430, 66958, 95532, 138876, 191796, 266692, 350230, 472864, 603204, 787164, 989436, 1253172, 1533036, 1926156, 2319931, 2834263, 3386143, 4089279, 4796589, 5749149, 6672701, 7871069, 9101837, 10605521
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Partial sums of A281372.
Column k=4 of A356124.
Cf. A356043.

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[3, k], {k, 1, n}]; Array[a, 34] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, 3));
    
  • PARI
    a(n) = sum(k=1, n, k^4*binomial(n\k+1, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^4*x^k/(1-x^k)^2)/(1-x))
    
  • Python
    from math import isqrt
    def A356126(n): return ((-(s:=isqrt(n))**2*(s+1)**2*((s<<1)+1)*(s*(3*(s+1))-1)>>1)+sum(k*(q:=n//k)*(q+1)*(15*k**3+((q<<1)+1)*(q*(3*(q+1))-1)) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^4 * binomial(floor(n/k)+1,2).
G.f.: (1/(1-x)) * Sum_{k>=1} k^4 * x^k/(1 - x^k)^2.

A282777 Expansion of phi_{16, 1}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 65538, 43046724, 4295098372, 152587890630, 2821196197512, 33232930569608, 281483566907400, 1853020317992013, 10000305176108940, 45949729863572172, 184889914172333328, 665416609183179854, 2178019803670969104, 6568408813691796120
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2017

Keywords

Comments

Multiplicative because A013963 is. - Andrew Howroyd, Jul 25 2018

References

  • George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012. See p. 212.

Crossrefs

Cf. A064987 (phi_{2, 1}), A281372 (phi_{4, 1}), A282050 (phi_{6, 1}), A282060 (phi_{8, 1}), A282254 (phi_{10, 1}), A282548 (phi_{12, 1}), A282597 (phi_{14, 1}), this sequence (phi_{16, 1}).
Cf. A282546 (E_2*E_4^4), A282000 (E_4^3*E_6), A282547 (E_2*E_4*E_6^2), A282253 (E_6^3).
Cf. A013674.

Programs

  • Mathematica
    Table[If[n==0, 0, n * DivisorSigma[15, n]], {n, 0, 15}] (* Indranil Ghosh, Mar 11 2017 *)
  • PARI
    for(n=0, 15, print1(if(n==0, 0, n * sigma(n, 15)), ", ")) \\ Indranil Ghosh, Mar 11 2017

Formula

a(n) = n*A013963(n) for n > 0.
a(n) = (2156*A282546(n) - 4156*A282000(n) + 8000*A282547(n)/3 - 2000*A282253(n)/3)/16320.
Sum_{k=1..n} a(k) ~ zeta(16) * n^17 / 17. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^e * (p^(15*e+15)-1)/(p^15-1).
Dirichlet g.f.: zeta(s-1)*zeta(s-16). (End)
Previous Showing 11-16 of 16 results.