cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A378621 Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
		

Crossrefs

These are the antidiagonal-sums of the absolute value of A175804.
First column of the same array is A281425.
For primes we have A376681 or A376684, signed A140119 or A376683.
For composites we have A377035, signed A377034.
For squarefree numbers we have A377040, signed A377039.
For nonsquarefree numbers we have A377048, signed A377049.
For prime powers we have A377053, signed A377052.
The signed version is A377056.
The corresponding array for strict partitions is A378622, see A293467, A377285, A378971, A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    q=Table[PartitionsP[n],{n,0,nn}];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}]
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A379378 The n-th term of the n-th forward differences of partition numbers A000041.

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 22, 64, 159, 328, 747, 1914, 4608, 10252, 23339, 55405, 128034, 287855, 660549, 1541383, 3528645, 7921187, 17870633, 40689873, 92248847, 207911243, 469331387, 1059603243, 2377923972, 5313383490, 11889346697, 26641635997, 59560543885
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2024

Keywords

Crossrefs

Main diagonal of A175804.
Cf. A000041, A033815, A281425, A386457 (parity).

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0,
          combinat[numbpart](n), b(n+1, k-1)-b(n, k-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);
  • Mathematica
    A379378list[nmax_] := Module[{p = PartitionsP[Range[0, nmax*2]]}, Join[{First[p]}, Table[First[p = Differences[Rest[p]]], nmax]]];
    A379378list[50] (* Paolo Xausa, Jul 26 2025 *)

A294499 Inverse binomial transform of the number of overpartitions (A015128).

Original entry on oeis.org

1, 1, 1, 1, -1, 3, -5, 7, -7, 3, 5, -9, -17, 129, -417, 977, -1809, 2591, -2317, -1061, 10485, -27983, 49165, -51319, -26861, 311455, -1011473, 2393275, -4643591, 7521265, -9694135, 7738137, 4976985, -38789975, 106112817, -215068927, 354515933, -464539803
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n, k]*Sum[PartitionsP[k-j]*PartitionsQ[j], {j, 0, k}], {k, 0, n}], {n, 0, 50}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A015128(k).
a(n) = [x^n] (1 - x)^n/theta_4(x), where theta_4() is the Jacobi theta function. - Ilya Gutkovskiy, Nov 03 2017

A380412 First term of the n-th differences of the strict partition numbers. Inverse zero-based binomial transform of A000009.

Original entry on oeis.org

1, 0, 0, 1, -3, 7, -14, 25, -41, 64, -100, 165, -294, 550, -1023, 1795, -2823, 3658, -2882, -2873, 20435, -62185, 148863, -314008, 613957, -1155794, 2175823, -4244026, 8753538, -19006490, 42471787, -95234575, 210395407, -453413866, 949508390, -1931939460
Offset: 0

Views

Author

Gus Wiseman, Feb 03 2025

Keywords

Comments

Up to sign, same as A293467.

Crossrefs

The version for non-strict partitions is A281425, row n=0 of A175804.
Column n=0 of A378622.
A000009 counts strict integer partitions, differences A087897, A378972.
A266232 gives zero-based binomial transform of A000009, differences A129519.

Programs

  • Mathematica
    nn=10;Table[First[Differences[PartitionsQ/@Range[0,nn],n]],{n,0,nn}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k) A000041(k).

A307258 Expansion of (1/(1 + x)) * Product_{k>=1} 1/(1 - k*x^k/(1 + x)^k).

Original entry on oeis.org

1, 0, 2, -1, 5, -11, 36, -107, 311, -850, 2208, -5519, 13566, -33562, 84937, -220307, 579413, -1522616, 3954016, -10100863, 25416877, -63324271, 157248035, -391478354, 980410093, -2470810086, 6253495883, -15846525758, 40093721908, -101116823798, 254093749587, -636547773777
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Comments

Inverse binomial transform of A006906.

Crossrefs

Programs

  • Maple
    a:=series((1/(1+x))*mul(1/(1-k*x^k/(1+x)^k),k=1..100),x=0,32): seq(coeff(a,x,n),n=0..31); # Paolo P. Lava, Apr 03 2019
  • Mathematica
    nmax = 31; CoefficientList[Series[1/(1 + x) Product[1/(1 - k x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^(n - k) Binomial[n, k] Total[Times @@@ IntegerPartitions[k]], {k, 0, n}], {n, 0, 31}]

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*A006906(k).

A379542 Second term of the n-th differences of the prime numbers.

Original entry on oeis.org

3, 2, 0, 2, -6, 14, -30, 62, -122, 220, -344, 412, -176, -944, 4112, -11414, 26254, -53724, 100710, -175034, 281660, -410896, 506846, -391550, -401486, 2962260, -9621128, 24977308, -57407998, 120867310, -236098336, 428880422, -719991244, 1096219280
Offset: 0

Views

Author

Gus Wiseman, Jan 12 2025

Keywords

Comments

Also the inverse zero-based binomial transform of the odd prime numbers.

Crossrefs

For all primes (not just odd) we have A007442.
Including 1 in the primes gives A030016.
Column n=2 of A095195.
The version for partitions is A320590 (first column A281425), see A175804, A053445.
For nonprime instead of prime we have A377036, see A377034-A377037.
Arrays of differences: A095195, A376682, A377033, A377038, A377046, A377051.
A000040 lists the primes, differences A001223, A036263.
A002808 lists the composite numbers, differences A073783, A073445.
A008578 lists the noncomposite numbers, differences A075526.

Programs

  • Mathematica
    nn=40;Table[Differences[Prime[Range[nn+2]],n][[2]],{n,0,nn}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * prime(k+2)); \\ Michel Marcus, Jan 12 2025

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * prime(k+2).
Previous Showing 21-26 of 26 results.