cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A282764 9*n analog to Keith numbers.

Original entry on oeis.org

9, 17, 48, 55, 96, 120, 124, 131, 244, 426, 787, 1893, 5307, 5364, 5600, 10083, 31085, 46733, 52700, 53456, 56857, 56920, 109620, 110313, 110376, 374016, 2989245, 4081505, 5173765, 13017112, 17242512, 34346372, 34638676
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2017

Keywords

Comments

Like Keith numbers but starting from 9*n digits to reach n.
Consider the digits of 9*n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			9*17 = 153:
1 + 5 + 3 = 9;
5 + 3 + 9 = 17.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q, h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1 to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b); while v[t]
    				
  • Mathematica
    Select[Range[10^6], Function[n, Module[{d = IntegerDigits[9 n], s, k = 0}, s = Total@ d; While[s < n, AppendTo[d, s]; k++; s = 2 s - d[[k]]]; s == n]]] (* Michael De Vlieger, Feb 22 2017, after T. D. Noe at A007629 *)

A282767 n/3 analog of Keith numbers.

Original entry on oeis.org

45, 609, 1218, 1827, 3213, 21309, 28206, 29319, 31917, 39333, 47337, 78666, 102090, 117999, 204180, 406437, 302867592, 4507146801, 5440407522
Offset: 1

Views

Author

Paolo P. Lava, Feb 27 2017

Keywords

Comments

Like Keith numbers but starting from n/3 digits to reach n.
Consider the digits of n/3. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.
If it exists, a(20) > 10^12. - Lars Blomberg Mar 13 2017

Examples

			609/3 = 203:
2 + 0 + 3 = 5;
0 + 3 + 5 = 8;
3 + 5 + 8 = 16;
5 + 8 + 16 = 29;
8 + 16 + 29 = 53;
16 + 29 + 53 = 98;
29 + 53 + 98 = 180;
53 + 98 + 180 = 331;
98 + 180 + 331 = 609.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h,w) local a, b, k, n, t, v; v:=array(1..h);
    for n from 1/w by 1/w to q do a:=w*n; b:=ilog10(a)+1; if b>1 then
    for k from 1 to b do v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1; v[t]:=add(v[k], k=1..b);
    while v[t]
    				
  • Mathematica
    With[{n = 3}, Select[Range[10 n, 10^6, n], Function[k, Last@ NestWhile[Append[Rest@ #, Total@ #] &, IntegerDigits[k/n], Total@ # <= k &] == k]]] (* Michael De Vlieger, Feb 27 2017 *)

Extensions

a(17)-a(19) from Lars Blomberg, Mar 13 2017

A284493 Analog of Keith numbers based on digits of sum of anti-divisors.

Original entry on oeis.org

18, 26, 40, 93, 95, 122, 227, 5640, 8910, 15481, 56028, 117056, 282103, 394608, 2059983, 3775282, 3804607, 5005918, 10390740, 31753906, 42117745, 67170923, 98908536, 176337241
Offset: 1

Views

Author

Paolo P. Lava, Mar 28 2017

Keywords

Comments

Consider the digits of the sum of anti-divisors of n. Take their sum and repeat the process deleting the first addend and adding the previous sum. The sequence lists the numbers that after some iterations reach a sum equal to themselves.

Examples

			Sum of the anti-divisors of 18 is 28: 2 + 8 = 10, 8 + 10 = 18.
Sum of the anti-divisors of 93 is 140: 1 + 4 + 0 = 5, 4 + 0 + 5 = 9, 0 + 5 + 9 = 14, 5 + 9 + 14 = 28, 9 + 14 + 28 = 51, 14 + 28 + 51 = 93.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q,h) local a,b,j,k,n,t,v; v:=array(1..h);
    for n from 10^6 to q do k:=0; j:=n; while j mod 2 <> 1 do
    k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    b:=ilog10(a)+1; if b>1 then for k from 1 to b do
    v[b-k+1]:=(a mod 10); a:=trunc(a/10); od; t:=b+1;
    v[t]:=add(v[k], k=1..b); while v[t]
    				

Extensions

a(18)-a(24) from Georg Fischer, Oct 26 2019
Previous Showing 11-13 of 13 results.