A295597 Numbers k such that Bernoulli number B_{k} has denominator 4501770.
96, 20256, 42144, 56352, 62112, 70368, 84576, 105312, 119904, 146208, 155616, 156192, 165408, 167136, 168864, 183648, 187296, 200352, 200544, 204576, 217824, 221664, 228192, 234336, 240288, 252768, 255072, 255264, 258144, 262176, 263904, 266592, 274272, 304224, 306336
Offset: 1
Examples
Bernoulli B_{96} is -211600449597266513097597728109824233673043954389060234150638733420050668349987 259/4501770 hence 96 is in the sequence.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): P:=proc(q, h) local n; for n from 2 by 2 to q do if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6, 4501770); # Alternative: # according to Robert Israel code in A282773 with(numtheory): filter:= n -> select(isprime, map(`+`, divisors(n), 1)) = {2, 3, 5, 7, 13, 17, 97}: select(filter, [seq(i, i=1..10^5)]);
-
Mathematica
96*Flatten[Position[BernoulliB[Range[96,31*10^4,96]],?(Denominator[ #] == 4501770&)]] (* The program takes a long time to run *) (* _Harvey P. Dale, May 06 2018 *)
Comments