cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A284150 Sum_{d|n, d==1 or 4 mod 5} d.

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 5, 10, 1, 12, 11, 1, 15, 1, 21, 1, 16, 20, 5, 22, 12, 1, 35, 1, 27, 10, 19, 30, 7, 32, 21, 12, 35, 1, 56, 1, 20, 40, 5, 42, 42, 1, 60, 10, 47, 1, 51, 50, 1, 52, 31, 1, 70, 12, 75, 20, 30, 60, 11, 62, 32, 31, 85, 1, 84, 1, 39, 70, 15, 72, 80, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2017

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 or k-1 mod k} d: A046913 (k=3), A000593 (k=4), this sequence (k=5), A186099 (k=6), A284151 (k=7).

Programs

  • Maple
    A284150 := proc(n)
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(d,5) in {1,4} then
                a := a+d ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Mar 21 2017
  • Mathematica
    Table[Sum[If[Mod[d, 5] == 1 || Mod[d,5]==4, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 21 2017 *)
  • PARI
    for(n=1, 80, print1(sumdiv(n, d, if(d%5==1 || d%5 ==4, d, 0)), ", ")) \\ Indranil Ghosh, Mar 21 2017
    
  • Python
    from sympy import divisors
    def a(n): return sum([d for d in divisors(n) if d%5==1 or d%5 == 4]) # Indranil Ghosh, Mar 21 2017

Formula

a(n) = A284097(n) + A284103(n). - Seiichi Manyama, Mar 24 2017

A363897 Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 12, 14, 13, 14, 15, 17, 17, 21, 19, 20, 22, 24, 23, 28, 25, 27, 27, 28, 29, 35, 32, 34, 36, 34, 35, 43, 37, 38, 39, 40, 42, 51, 43, 48, 45, 47, 47, 59, 49, 50, 52, 54, 53, 63, 60, 57, 57, 58, 59, 70, 62, 64, 66, 68, 65, 84, 67, 68, 69, 70, 72, 86, 73, 74, 75, 77, 84, 94
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==1)*d);

Formula

a(n) = Sum_{d|n, n/d==1 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-4) / (1 - x^(5*k-4))^2.

A363925 Expansion of Sum_{k>0} x^k / (1 - x^(5*k))^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 5, 1, 3, 1, 1, 6, 4, 1, 3, 1, 7, 1, 1, 1, 3, 8, 5, 4, 1, 1, 11, 1, 1, 1, 1, 10, 8, 1, 4, 1, 11, 1, 7, 1, 1, 12, 7, 1, 3, 4, 13, 1, 1, 1, 3, 14, 8, 6, 5, 1, 20, 1, 1, 1, 1, 16, 11, 1, 1, 1, 17, 4, 9, 1, 5, 18, 10, 1, 8, 1, 19, 1, 4, 1, 3, 20, 11
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 4 &, Mod[#, 5] == 1 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)*(d+4))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==1 mod 5} (d+4) = (4 * A001876(n) + A284097(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-4) / (1 - x^(5*k-4)).

A364092 Sum of divisors of 5*n-1 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 1, 7, 1, 1, 1, 12, 1, 7, 1, 17, 1, 1, 1, 28, 1, 1, 12, 27, 1, 7, 1, 32, 1, 1, 1, 59, 1, 12, 1, 42, 1, 7, 1, 47, 22, 1, 1, 58, 12, 1, 1, 73, 1, 33, 1, 62, 1, 1, 1, 84, 1, 1, 32, 72, 1, 28, 1, 93, 1, 1, 12, 124, 1, 1, 1, 87, 1, 7, 1, 118, 42, 12, 1, 119, 1, 1, 22, 102, 1, 53, 1, 107, 12, 32, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 1, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(5*n-1, d, (d%5==1)*d);

Formula

a(n) = A284097(5*n-1).
G.f.: Sum_{k>0} (5*k-4) * x^(4*k-3) / (1 - x^(5*k-4)).

A364093 Sum of divisors of 5*n-2 of form 5*k+1.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 12, 1, 1, 23, 1, 1, 22, 1, 1, 33, 1, 12, 32, 1, 1, 43, 1, 1, 42, 17, 1, 53, 12, 1, 52, 1, 1, 84, 1, 1, 62, 1, 1, 84, 1, 43, 72, 1, 1, 83, 1, 1, 82, 32, 12, 93, 1, 1, 113, 1, 1, 155, 1, 1, 102, 12, 1, 113, 1, 42, 112, 27, 1, 123, 1, 1, 133, 63, 1, 154, 1, 1, 132, 1, 32, 194, 1, 12, 142
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 2, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(5*n-2, d, (d%5==1)*d);

Formula

a(n) = A284097(5*n-2).
G.f.: Sum_{k>0} (5*k-4) * x^(3*k-2) / (1 - x^(5*k-4)).

A364094 Sum of divisors of 5*n-3 of form 5*k+1.

Original entry on oeis.org

1, 1, 7, 1, 12, 1, 17, 1, 28, 1, 27, 1, 32, 1, 43, 12, 42, 1, 47, 1, 58, 1, 73, 1, 62, 1, 84, 1, 72, 22, 77, 1, 88, 1, 87, 1, 118, 12, 119, 1, 102, 1, 107, 32, 118, 1, 117, 1, 133, 1, 190, 1, 132, 1, 153, 1, 148, 42, 147, 12, 152, 1, 189, 1, 208, 1, 167, 1, 178, 1, 204, 73, 182, 1, 224, 1, 192, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 3, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 17 2023 *)
  • PARI
    a(n) = sumdiv(5*n-3, d, (d%5==1)*d);

Formula

a(n) = A284097(5*n-3).
G.f.: Sum_{k>0} (5*k-4) * x^(2*k-1) / (1 - x^(5*k-4)).

A364095 Sum of divisors of 5*n-4 of form 5*k+1.

Original entry on oeis.org

1, 7, 12, 17, 22, 27, 32, 43, 42, 47, 52, 57, 62, 84, 72, 77, 82, 87, 92, 119, 102, 107, 112, 117, 133, 154, 132, 137, 142, 147, 152, 189, 162, 167, 172, 204, 182, 224, 192, 197, 202, 207, 212, 259, 222, 227, 264, 237, 242, 294, 252, 273, 262, 267, 272, 329, 282, 324, 292, 297, 302, 364, 312
Offset: 1

Views

Author

Seiichi Manyama, Jul 04 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[5*n - 4, # &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 12 2023 *)
  • PARI
    a(n) = sumdiv(5*n-4, d, (d%5==1)*d);

Formula

a(n) = A284097(5*n-4).
G.f.: Sum_{k>0} (5*k-4) * x^k / (1 - x^(5*k-4)).

A357912 a(n) = Sum_{d|n, d==1 (mod 11)} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 46, 24, 1, 13, 1, 1, 1, 1, 1, 1, 1, 57, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 68, 35, 24, 1, 1, 13, 1, 1, 1, 1, 1, 79, 1, 1, 1, 1, 1, 13, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 17 2023

Keywords

Crossrefs

Cf. Sum_{d|n, d==1 (mod k)} d: A000593 (k=2), A078181 (k=3), A050449 (k=4), A284097 (k=5), A284098 (k=6), A284099 (k=7), A284100 (k=8), this sequence (k=11).
Cf. A357911.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[#, 11] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (Mod(d, 11)==1)*d);
    
  • PARI
    my(N=100, x='x+O('x^N)); Vec(sum(k=0, N, (11*k+1)*x^(11*k+1)/(1-x^(11*k+1))))

Formula

G.f.: Sum_{k>=0} (11*k+1) * x^(11*k+1)/(1 - x^(11*k+1)).
Previous Showing 11-18 of 18 results.