A338333
Number of relatively prime 3-part strict integer partitions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 8, 14, 12, 18, 16, 24, 18, 30, 25, 34, 30, 44, 31, 52, 42, 56, 49, 69, 50, 80, 64, 83, 70, 102, 71, 114, 90, 112, 100, 140, 98, 153, 117, 153, 132, 184, 128, 195, 154, 196, 169, 234, 156, 252, 196, 241
Offset: 0
The a(9) = 1 through a(19) = 14 triples (A = 10, B = 11, C = 12, D = 13, E = 14):
432 532 542 543 643 653 654 754 764 765 865
632 732 652 743 753 763 854 873 874
742 752 762 853 863 954 964
832 932 843 943 872 972 973
852 952 953 A53 982
942 B32 962 B43 A54
A32 A43 B52 A63
A52 D32 A72
B42 B53
C32 B62
C43
C52
D42
E32
A001399(n-9) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A337452 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A337605 is the pairwise non-coprime instead of relative prime version.
A338332 is the not necessarily strict version.
A000837 counts relatively prime partitions.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A101271 counts 3-part relatively prime strict partitions.
A220377 counts 3-part pairwise coprime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
-
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
A338332
Number of relatively prime 3-part integer partitions of n with no 1's.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 3, 8, 6, 9, 9, 16, 10, 21, 15, 22, 20, 33, 21, 38, 30, 41, 35, 56, 34, 65, 49, 64, 56, 79, 55, 96, 72, 93, 77, 120, 76, 133, 99, 122, 110, 161, 105, 172, 126, 167, 143, 208, 136, 213, 165, 212, 182, 261, 163, 280, 210, 257
Offset: 0
The a(7) = 1 through a(17) = 16 triples (A = 10, B = 11, C = 12, D = 13):
322 332 432 433 443 543 544 554 654 655 665
522 532 533 552 553 653 744 754 755
542 732 643 743 753 763 764
632 652 752 762 772 773
722 733 833 843 853 854
742 932 852 943 863
832 942 952 872
922 A32 A33 944
B22 B32 953
962
A43
A52
B33
B42
C32
D22
A001399(n-6) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A302698 counts these partitions of any length.
A337563 is the pairwise coprime instead of relatively prime version.
A008284 counts partitions by sum and length.
Cf.
A000010,
A000741,
A023022,
A078374,
A082024,
A101271,
A307719,
A337450,
A337599,
A337600,
A337601.
-
Table[Length[Select[IntegerPartitions[n,{3}],!MemberQ[#,1]&&GCD@@#==1&]],{n,0,30}]
A230035
Numbers which can be represented as a sum of 3 relatively prime positive integers such that each pair of them is not coprime.
Original entry on oeis.org
31, 37, 41, 43, 47, 49, 53, 55, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 86, 87, 89, 91, 92, 93, 95, 97, 99, 101, 103, 106, 107, 109, 111, 113, 115, 116, 117, 118, 119, 121, 122, 123, 125, 127, 128, 129, 131, 133, 134, 135, 136, 137, 139, 141, 143
Offset: 1
31 is in a(n) because 31 = 6 + 10 + 15 and gcd(6, 10, 15) = 1 however gcd(6, 10) = 2, gcd(6, 15) = 3, gcd(10, 15) = 5.
A338318
Composite numbers whose prime indices are pairwise intersecting (non-coprime).
Original entry on oeis.org
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2} 121: {5,5} 243: {2,2,2,2,2}
21: {2,4} 125: {3,3,3} 247: {6,8}
25: {3,3} 129: {2,14} 259: {4,12}
27: {2,2,2} 133: {4,8} 261: {2,2,10}
39: {2,6} 147: {2,4,4} 267: {2,24}
49: {4,4} 159: {2,16} 273: {2,4,6}
57: {2,8} 169: {6,6} 289: {7,7}
63: {2,2,4} 171: {2,2,8} 299: {6,9}
65: {3,6} 183: {2,18} 301: {4,14}
81: {2,2,2,2} 185: {3,12} 303: {2,26}
87: {2,10} 189: {2,2,2,4} 305: {3,18}
91: {4,6} 203: {4,10} 319: {5,10}
111: {2,12} 213: {2,20} 321: {2,28}
115: {3,9} 235: {3,15} 325: {3,3,6}
117: {2,2,6} 237: {2,22} 333: {2,2,12}
A200976 counts the partitions with these Heinz numbers.
A302696 is the pairwise coprime instead of pairwise non-coprime version.
A318717 counts pairwise intersecting strict partitions.
A328673 counts partitions with pairwise intersecting distinct parts, with Heinz numbers
A328867 and restriction to triples
A337599 (except n = 3).
Cf.
A008578,
A051185,
A056239,
A101268,
A112798,
A284825,
A302569,
A305843,
A319752,
A327516,
A335236,
A337666,
A337667.
-
stabstrQ[u_,Q_]:=And@@Not/@Q@@@Tuples[u,2];
Select[Range[2,100],!PrimeQ[#]&&stabstrQ[PrimePi/@First/@FactorInteger[#],CoprimeQ]&]
A308034
Number of partitions of n into 3 parts with at least 1 part that is a nondivisor of n.
Original entry on oeis.org
0, 0, 0, 0, 2, 1, 4, 4, 6, 8, 10, 9, 14, 16, 18, 20, 24, 25, 30, 32, 36, 40, 44, 45, 52, 56, 60, 64, 70, 73, 80, 84, 90, 96, 102, 105, 114, 120, 126, 132, 140, 145, 154, 160, 168, 176, 184, 189, 200, 208, 216, 224, 234, 241, 252, 260, 270, 280, 290, 297, 310
Offset: 1
7 = 2 + (1 + 4) = 2 + (2 + 3) = 3 + (1 + 3) = 5 + (1 + 1); the first integer corresponds to one part that is a nondivisor of 7. So a(7) = 4. - _Bernard Schott_, May 12 2019
Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
1+1+8
1+1+7 1+2+7
1+2+6 1+3+6
1+1+6 1+3+5 1+4+5
1+1+5 1+2+5 1+4+4 2+2+6
1+1+4 1+2+4 1+3+4 2+2+5 2+3+5
1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4
1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ...
-----------------------------------------------------------------------
n | 3 4 5 6 7 8 9 10 ...
-----------------------------------------------------------------------
a(n) | 0 0 2 1 4 4 6 8 ...
-----------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 07 2019
-
Table[Sum[Sum[1 - (1 - Ceiling[n/i] + Floor[n/i])*(1 - Ceiling[n/k] + Floor[n/k])*(1 - Ceiling[n/(n - i - k)] + Floor[n/(n - i - k)]), {i, k, Floor[(n - k)/2]}], {k, Floor[n/3]}], {n, 100}]
Comments