cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A286154 Compound filter: a(n) = T(A055396(n), A000010(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

0, 1, 5, 2, 18, 2, 40, 7, 23, 7, 96, 7, 142, 16, 38, 29, 238, 16, 308, 29, 80, 46, 444, 29, 234, 67, 173, 67, 676, 29, 791, 121, 212, 121, 328, 67, 1093, 154, 302, 121, 1339, 67, 1499, 191, 302, 232, 1785, 121, 994, 191, 530, 277, 2227, 154, 864, 277, 668, 379, 2718, 121, 2944, 436, 668, 497, 1228, 191, 3505, 497, 992, 277, 3936, 277, 4207, 631, 822, 631
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {If[n == 1, 0, PrimePi[ FactorInteger[n][[1, 1]] ]], EulerPhi@ n}, {n, 76}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A000010(n) = eulerphi(n);
    A055396(n) = if(n==1, 0, primepi(factor(n)[1, 1])); \\ This function from Charles R Greathouse IV, Apr 23 2015
    A286154(n) = (2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n))/2;
    for(n=1, 10000, write("b286154.txt", n, " ", A286154(n)));
    
  • Python
    from sympy import primepi, isprime, primefactors, totient
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a(n): return T(a055396(n), totient(n)) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286154 n) (* (/ 1 2) (+ (expt (+ (A055396 n) (A000010 n)) 2) (- (A055396 n)) (- (* 3 (A000010 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A055396(n)+A000010(n))^2) - A055396(n) - 3*A000010(n)).

A300224 Filter sequence combining A046523(n) and A296078(n), prime signature of n and prime signature of phi(n)+1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 7, 8, 2, 6, 2, 9, 4, 4, 2, 10, 11, 4, 5, 6, 2, 12, 2, 13, 14, 4, 7, 15, 2, 4, 7, 16, 2, 17, 2, 18, 9, 4, 2, 19, 3, 18, 14, 9, 2, 16, 4, 10, 4, 4, 2, 20, 2, 4, 6, 21, 7, 22, 2, 18, 23, 12, 2, 24, 2, 4, 6, 6, 4, 12, 2, 25, 26, 4, 2, 27, 14, 4, 14, 16, 2, 27, 4, 28, 4, 4, 4, 29, 2, 6, 6, 15, 2, 22, 2, 10, 12
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2018

Keywords

Comments

Restricted growth sequence transform of P(A046523(n), A296078(n)), where P(a,b) is a two-argument form of A000027 used as a Cantor pairing function N x N -> N.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A296078(n) = A046523(1+eulerphi(n));
    Aux300224(n) = (1/2)*(2 + ((A296078(n)+A046523(n))^2) - A296078(n) - 3*A046523(n));
    write_to_bfile(1,rgs_transform(vector(up_to,n,Aux300224(n))),"b300224.txt");

A286149 Compound filter: a(n) = T(A046523(n), A109395(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 5, 8, 14, 17, 34, 30, 44, 19, 51, 68, 103, 93, 72, 196, 152, 155, 103, 192, 132, 72, 126, 278, 349, 32, 159, 53, 165, 437, 976, 498, 560, 709, 237, 786, 739, 705, 282, 159, 402, 863, 660, 948, 243, 337, 384, 1130, 1273, 49, 132, 1546, 288, 1433, 349, 126, 459, 282, 567, 1772, 2761, 1893, 636, 165, 2144, 2421, 1921, 2280, 390, 2707, 2046, 2558, 2773, 2703
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 & @@ {Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], Denominator[EulerPhi[n]/n]}, {n, 73}] (* Michael De Vlieger, May 04 2017 *)
  • PARI
    A109395(n) = n/gcd(n, eulerphi(n));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286149(n) = (1/2)*(2 + ((A046523(n)+A109395(n))^2) - A046523(n) - 3*A109395(n));
    for(n=1, 10000, write("b286149.txt", n, " ", A286149(n)));
    
  • Python
    from sympy import factorint, totient, gcd
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(a046523(n), n/gcd(n, totient(n))) # Indranil Ghosh, May 05 2017
  • Scheme
    (define (A286149 n) (* (/ 1 2) (+ (expt (+ (A046523 n) (A109395 n)) 2) (- (A046523 n)) (- (* 3 (A109395 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A109395(n))^2) - A046523(n) - 3*A109395(n)).

A318893 Filter sequence combining the prime signature of n (A046523) with Euler totient function (A000010).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 21, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 42, 48, 43, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 53, 70, 59, 71, 66, 72, 73, 74, 51, 75, 76, 77, 78, 79, 80, 81, 76, 82, 83, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Comments

Restricted growth sequence transform of A286160.
For all i, j: a(i) = a(j) => A062355(i) = A062355(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A318893aux(n) = [eulerphi(n), A046523(n)];
    v318893 = rgs_transform(vector(up_to,n,A318893aux(n)));
    A318893(n) = v318893[n];

A286568 Compound filter (phi(n) & 2-adic valuation of sigma(n)): a(n) = P(A000010(n), A286357(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 1, 8, 3, 14, 8, 42, 10, 21, 14, 76, 19, 90, 42, 63, 36, 152, 21, 208, 44, 148, 76, 322, 53, 210, 90, 228, 117, 434, 63, 625, 136, 296, 152, 402, 78, 702, 208, 375, 152, 860, 148, 988, 251, 324, 322, 1271, 169, 903, 210, 627, 324, 1430, 228, 943, 375, 816, 434, 1828, 187, 1890, 625, 777, 528, 1273, 296, 2344, 560, 1220, 402, 2698, 300, 2700, 702, 901
Offset: 1

Views

Author

Antti Karttunen, May 26 2017

Keywords

Crossrefs

Programs

  • PARI
    A000010(n) = eulerphi(n);
    A001511(n) = (1+valuation(n,2));
    A286357(n) = A001511(sigma(n));
    A286568(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n));
    
  • Python
    from sympy import divisor_sigma as D, totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def a001511(n): return bin(n)[2:][::-1].index("1") + 1
    def a286357(n): return a001511(D(n))
    def a(n): return T(totient(n), a286357(n)) # Indranil Ghosh, May 26 2017
  • Scheme
    (define (A286568 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A286357 n)) 2) (- (A000010 n)) (- (* 3 (A286357 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A000010(n)+A286357(n))^2) - A000010(n) - 3*A286357(n)).

A289622 Compound filter (prime signature & Carmichael's lambda): a(n) = P(A046523(n), A002322(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 3, 5, 14, 12, 27, 23, 44, 40, 42, 57, 90, 80, 61, 42, 187, 138, 148, 173, 117, 61, 111, 255, 324, 257, 142, 308, 148, 408, 558, 467, 773, 111, 216, 142, 856, 668, 259, 142, 375, 822, 625, 905, 222, 265, 357, 1083, 1323, 994, 477, 216, 265, 1380, 844, 306, 430, 259, 534, 1713, 2013, 1832, 601, 148, 3145, 142, 771, 2213, 363, 357
Offset: 1

Views

Author

Antti Karttunen, Jul 16 2017

Keywords

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A046523(n)+A002322(n))^2) - A046523(n) - 3*A002322(n)).

A289628 Compound filter (for the structure of the multiplicative group of integers modulo n & prime signature of n): a(n) = P(A289626(n), A101296(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 5, 8, 9, 12, 14, 41, 19, 18, 27, 50, 35, 25, 63, 99, 54, 40, 65, 86, 102, 42, 90, 203, 134, 52, 101, 131, 135, 128, 152, 342, 228, 75, 250, 221, 230, 88, 250, 399, 275, 182, 299, 271, 295, 117, 324, 517, 323, 185, 403, 295, 377, 146, 462, 623, 525, 168, 495, 549, 527, 187, 698, 728, 663, 343, 629, 460, 738, 370, 702, 889, 740, 273, 523, 590, 858, 370
Offset: 1

Views

Author

Antti Karttunen, Jul 19 2017

Keywords

Comments

Here, instead of A046523 and A289625 we use as the components of a(n) their rgs-versions A101296 and A289626 because of the latter sequence's more moderate growth rate.
For all i, j: a(i) = a(j) => A286160(i) = A286160(j).
For all i, j: a(i) = a(j) => A289622(i) = A289622(j).

Crossrefs

Programs

Formula

a(n) = (1/2)*(2 + ((A289626(n)+A101296(n))^2) - A289626(n) - 3*A101296(n)).
Previous Showing 11-17 of 17 results.