A291568 The arithmetic function uhat(n,5,5).
1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3, 1, 1, 1, 1, -3
Offset: 1
Keywords
Links
- Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Table in Section 1.6.4.
Programs
-
Mathematica
delta[r_, k_, d_] := If[r < k, (k - r)*r - (d - 1), If[k < r && r < d, (d - r)*(r - k) - (d - 1), If[k == r && r == d, d - 1, 0]]] uhat[n_, m_, h_] := (dx = Divisors[n]; dmin = n; For[i = 1, i ≤ Length[dx], i++, d = dx[[i]]; k = m - d*Ceiling[m/d] + d; r = h - d*Ceiling[h/d] + d; If[h ≤ Min[k, d - 1], dmin = Min[dmin, n, (h*Ceiling[m/d] - h + 1)*d, h*m - h*h + 1], dmin = Min[dmin, n, h*m - h*h + 1 - delta[r, k, d]]]]; dmin) Table[uhat[n, 5,5], {n, 1, 70}]
Formula
Conjectures from Chai Wah Wu, Jun 10 2025: (Start)
a(n) = a(n-5) for n > 5.
G.f.: x*(3*x^4 - x^3 - x^2 - x - 1)/(x^5 - 1). (End)
Comments