A348527 Noninfinitary Zumkeller numbers: numbers whose set of noninfinitary divisors is nonempty and can be partitioned into two disjoint sets of equal sum.
48, 80, 96, 112, 150, 180, 240, 252, 294, 336, 360, 396, 432, 468, 480, 486, 504, 528, 560, 600, 612, 624, 630, 672, 684, 720, 726, 768, 792, 810, 816, 828, 864, 880, 912, 936, 960, 1008, 1014, 1040, 1044, 1050, 1056, 1104, 1116, 1120, 1134, 1176, 1200, 1232, 1248
Offset: 1
Keywords
Examples
48 is a term since its set of noninfinitary divisors, {2, 4, 6, 8, 12, 24}, can be partitioned into the two disjoint sets, {2, 6, 8, 12} and {4, 24}, whose sums are equal: 2 + 6 + 8 + 12 = 4 + 24 = 28.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
nidiv[1] = {}; nidiv[n_] := Complement[Divisors[n], Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; nizQ[n_] := Module[{d = nidiv[n], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[1250], !IntegerQ@ Log2@ DivisorSigma[0, #] && nizQ[#] &]
Comments