A291181
p-INVERT of the positive integers, where p(S) = 1 - 8*S.
Original entry on oeis.org
8, 80, 792, 7840, 77608, 768240, 7604792, 75279680, 745192008, 7376640400, 73021211992, 722835479520, 7155333583208, 70830500352560, 701149669942392, 6940666199071360, 68705512320771208, 680114457008640720, 6732439057765635992, 66644276120647719200
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 8 s;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291181 *)
LinearRecurrence[{10,-1},{8,80},30] (* Harvey P. Dale, Jul 31 2023 *)
A290891
p-INVERT of the positive integers, where p(S) = 1 - S^3.
Original entry on oeis.org
0, 0, 1, 6, 21, 57, 138, 330, 827, 2175, 5826, 15519, 40836, 106584, 277696, 724968, 1897380, 4972113, 13029534, 34125561, 89336141, 233831262, 612074526, 1602358863, 4195173507, 10983645498, 28756340047, 75285234408, 197097337248, 516002648064
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290891 *)
A290892
p-INVERT of the positive integers, where p(S) = 1 - S^4.
Original entry on oeis.org
0, 0, 0, 1, 8, 36, 120, 331, 808, 1852, 4248, 10312, 26968, 74012, 204968, 558253, 1483336, 3860588, 9938488, 25570103, 66214096, 172926104, 454504816, 1197527184, 3152221296, 8275051544, 21663395536, 56615219385, 147898879304, 386593228980, 1011521607736
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -28, 56, -69, 56, -28, 8, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290892 *)
-
concat(vector(3), Vec(x^3 / ((1-3*x+x^2)*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)) + O(x^50))) \\ Colin Barker, Aug 16 2017
A290893
p-INVERT of the positive integers, where p(S) = 1 - S^5.
Original entry on oeis.org
0, 0, 0, 0, 1, 10, 55, 220, 715, 2003, 5025, 11650, 25850, 57475, 134883, 345090, 952195, 2722455, 7765010, 21615771, 58293475, 152593575, 390679925, 988851150, 2502813930, 6394182650, 16569837550, 43533891575, 115440190725, 307108317769, 815362167365
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 253, -210, 120, -45, 10, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^5;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290893 *)
-
concat(vector(4), Vec(x^4 / ((1 - 3*x + x^2)*(1 - 7*x + 23*x^2 - 44*x^3 + 55*x^4 - 44*x^5 + 23*x^6 - 7*x^7 + x^8)) + O(x^50))) \\ Colin Barker, Aug 16 2017
A290894
p-INVERT of the positive integers, where p(S) = 1 - S^6.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 12, 78, 364, 1365, 4368, 12377, 31848, 75882, 170560, 370266, 803712, 1827099, 4531980, 12346791, 35783396, 105681186, 308229948, 873545479, 2392395276, 6336768804, 16309261148, 41095234896, 102361858716, 254804224832, 640481466012
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12, -66, 220, -495, 792, -923, 792, -495, 220, -66, 12, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^6;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290894 *)
-
concat(vector(5), Vec(x^5 / ((1 - 3*x + x^2)*(1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4)*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)) + O(x^50))) \\ Colin Barker, Aug 16 2017
A290895
p-INVERT of the positive integers, where p(S) = 1 - S^7.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 14, 105, 560, 2380, 8568, 27132, 77521, 203518, 497826, 1148126, 2527609, 5401676, 11508168, 25437917, 60978022, 162008098, 468103230, 1409724358, 4259541790, 12617126893, 36241765553, 100599743538, 269998374114, 702694008002
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (14, -91, 364, -1001, 2002, -3003, 3433, -3003, 2002, -1001, 364, -91, 14, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^7;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290895 *)
-
concat(vector(6), Vec(x^6 / ((1 - 3*x + x^2)*(1 - 11*x + 57*x^2 - 182*x^3 + 398*x^4 - 626*x^5 + 727*x^6 - 626*x^7 + 398*x^8 - 182*x^9 + 57*x^10 - 11*x^11 + x^12)) + O(x^50))) \\ Colin Barker, Aug 16 2017
A290896
p-INVERT of the positive integers, where p(S) = 1 - S^8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 16, 136, 816, 3876, 15504, 54264, 170544, 490315, 1307536, 3269288, 7732144, 17436220, 37819152, 79883544, 167737776, 362063944, 839161648, 2158258904, 6136548496, 18586871324, 57486027952, 176258492200, 527387147664, 1529591016109
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12869, 11440, -8008, 4368, -1820, 560, -120, 16, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^8;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290896 *)
-
concat(vector(7), Vec(x^7 / ((1 - 3*x + x^2)*(1 - x + x^2)*(1 - 4*x + 7*x^2 - 4*x^3 + x^4)*(1 - 8*x + 28*x^2 - 56*x^3 + 71*x^4 - 56*x^5 + 28*x^6 - 8*x^7 + x^8)) + O(x^40))) \\ Colin Barker, Aug 16 2017
A290897
p-INVERT of the positive integers, where p(S) = 1 - S - S^3.
Original entry on oeis.org
1, 3, 9, 29, 95, 307, 976, 3073, 9645, 30283, 95207, 299625, 943363, 2970320, 9351621, 29439359, 92671625, 291715157, 918275995, 2890621063, 9099375792, 28643956245, 90168412937, 283841284899, 893503898503, 2812659866565, 8853968158791, 27871395427616
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290897 *)
-
Vec((1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Aug 16 2017
A290898
p-INVERT of the positive integers, where p(S) = 1 - S - S^4.
Original entry on oeis.org
1, 3, 8, 22, 65, 203, 647, 2053, 6423, 19811, 60490, 183750, 557551, 1693921, 5157224, 15731043, 48041589, 146785994, 448475954, 1369853581, 4182850121, 12769287055, 38976737437, 118967979141, 363132913719, 1108463577238, 3383732698880, 10329587789993
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9, -34, 71, -89, 71, -34, 9, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290898 *)
-
Vec((1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4) / (1 - 9*x + 34*x^2 - 71*x^3 + 89*x^4 - 71*x^5 + 34*x^6 - 9*x^7 + x^8) + O(x^40)) \\ Colin Barker, Aug 18 2017
A290899
p-INVERT of the positive integers, where p(S) = 1 - S^2 - S^4.
Original entry on oeis.org
0, 1, 4, 12, 36, 110, 332, 983, 2876, 8380, 24428, 71357, 208868, 612178, 1795228, 5264684, 15436060, 45248195, 132616392, 388652536, 1138993032, 3338020181, 9782903524, 28671786116, 84032220964, 246284956558, 721820483900, 2115530739035, 6200240318564
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8, -27, 52, -63, 52, -27, 8, -1)
-
z = 60; s = x/(1 - x)^2; p = 1 - s^2 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290899 *)
-
concat(0, Vec(x*(1 - 4*x + 7*x^2 - 4*x^3 + x^4) / (1 - 8*x + 27*x^2 - 52*x^3 + 63*x^4 - 52*x^5 + 27*x^6 - 8*x^7 + x^8) + O(x^40))) \\ Colin Barker, Aug 18 2017
Comments