cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 64 results. Next

A291181 p-INVERT of the positive integers, where p(S) = 1 - 8*S.

Original entry on oeis.org

8, 80, 792, 7840, 77608, 768240, 7604792, 75279680, 745192008, 7376640400, 73021211992, 722835479520, 7155333583208, 70830500352560, 701149669942392, 6940666199071360, 68705512320771208, 680114457008640720, 6732439057765635992, 66644276120647719200
Offset: 0

Views

Author

Clark Kimberling, Aug 19 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - 8 s;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291181 *)
    LinearRecurrence[{10,-1},{8,80},30] (* Harvey P. Dale, Jul 31 2023 *)

Formula

G.f.: 8/(1 - 10 x + x^2).
a(n) = 10*a(n-1) - a(n-2).
a(n) = 8*A004189(n+1) for n >= 0.

A290891 p-INVERT of the positive integers, where p(S) = 1 - S^3.

Original entry on oeis.org

0, 0, 1, 6, 21, 57, 138, 330, 827, 2175, 5826, 15519, 40836, 106584, 277696, 724968, 1897380, 4972113, 13029534, 34125561, 89336141, 233831262, 612074526, 1602358863, 4195173507, 10983645498, 28756340047, 75285234408, 197097337248, 516002648064
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A280890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290891 *)

Formula

G.f.: x^2/(1 - 6 x + 15 x^2 - 21 x^3 + 15 x^4 - 6 x^5 + x^6).
a(n) = 6*a(n-1) - 15*a(n-2) + 21*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).

A290892 p-INVERT of the positive integers, where p(S) = 1 - S^4.

Original entry on oeis.org

0, 0, 0, 1, 8, 36, 120, 331, 808, 1852, 4248, 10312, 26968, 74012, 204968, 558253, 1483336, 3860588, 9938488, 25570103, 66214096, 172926104, 454504816, 1197527184, 3152221296, 8275051544, 21663395536, 56615219385, 147898879304, 386593228980, 1011521607736
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A280890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290892 *)
  • PARI
    concat(vector(3), Vec(x^3 / ((1-3*x+x^2)*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)) + O(x^50))) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 69*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x^3 / ((1-3*x+x^2)*(1-x+x^2)*(1-4*x+7*x^2-4*x^3+x^4)). - Colin Barker, Aug 16 2017

A290893 p-INVERT of the positive integers, where p(S) = 1 - S^5.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 55, 220, 715, 2003, 5025, 11650, 25850, 57475, 134883, 345090, 952195, 2722455, 7765010, 21615771, 58293475, 152593575, 390679925, 988851150, 2502813930, 6394182650, 16569837550, 43533891575, 115440190725, 307108317769, 815362167365
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A280890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^5;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290893 *)
  • PARI
    concat(vector(4), Vec(x^4 / ((1 - 3*x + x^2)*(1 - 7*x + 23*x^2 - 44*x^3 + 55*x^4 - 44*x^5 + 23*x^6 - 7*x^7 + x^8)) + O(x^50))) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 253*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).
G.f.: x^4 / ((1 - 3*x + x^2)*(1 - 7*x + 23*x^2 - 44*x^3 + 55*x^4 - 44*x^5 + 23*x^6 - 7*x^7 + x^8)). - Colin Barker, Aug 16 2017

A290894 p-INVERT of the positive integers, where p(S) = 1 - S^6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 12, 78, 364, 1365, 4368, 12377, 31848, 75882, 170560, 370266, 803712, 1827099, 4531980, 12346791, 35783396, 105681186, 308229948, 873545479, 2392395276, 6336768804, 16309261148, 41095234896, 102361858716, 254804224832, 640481466012
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290894 *)
  • PARI
    concat(vector(5), Vec(x^5 / ((1 - 3*x + x^2)*(1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4)*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)) + O(x^50))) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 923*a(n-6) + 792*a(n-7) - 495*a(n-8) + 22*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12).
G.f.: x^5 / ((1 - 3*x + x^2)*(1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4)*(1 - 3*x + 5*x^2 - 3*x^3 + x^4)). - Colin Barker, Aug 16 2017

A290895 p-INVERT of the positive integers, where p(S) = 1 - S^7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 14, 105, 560, 2380, 8568, 27132, 77521, 203518, 497826, 1148126, 2527609, 5401676, 11508168, 25437917, 60978022, 162008098, 468103230, 1409724358, 4259541790, 12617126893, 36241765553, 100599743538, 269998374114, 702694008002
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^7;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290895 *)
  • PARI
    concat(vector(6), Vec(x^6 / ((1 - 3*x + x^2)*(1 - 11*x + 57*x^2 - 182*x^3 + 398*x^4 - 626*x^5 + 727*x^6 - 626*x^7 + 398*x^8 - 182*x^9 + 57*x^10 - 11*x^11 + x^12)) + O(x^50))) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 14*a(n-1) - 91*a(n-2) + 364*a(n-3) - 1001*a(n-4) + 2002*a(n-5) - 3003*a(n-6) + 3433*a(n-7) - 3003*a(n-8) + 2002*a(n-9) - 1001*a(n-10) + 364*a(n-11) - 91*a(n-12) + 14*a(n-13) - a(n-14).
G.f.: x^6 / ((1 - 3*x + x^2)*(1 - 11*x + 57*x^2 - 182*x^3 + 398*x^4 - 626*x^5 + 727*x^6 - 626*x^7 + 398*x^8 - 182*x^9 + 57*x^10 - 11*x^11 + x^12)). - Colin Barker, Aug 16 2017

A290896 p-INVERT of the positive integers, where p(S) = 1 - S^8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 16, 136, 816, 3876, 15504, 54264, 170544, 490315, 1307536, 3269288, 7732144, 17436220, 37819152, 79883544, 167737776, 362063944, 839161648, 2158258904, 6136548496, 18586871324, 57486027952, 176258492200, 527387147664, 1529591016109
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^8;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290896 *)
  • PARI
    concat(vector(7), Vec(x^7 / ((1 - 3*x + x^2)*(1 - x + x^2)*(1 - 4*x + 7*x^2 - 4*x^3 + x^4)*(1 - 8*x + 28*x^2 - 56*x^3 + 71*x^4 - 56*x^5 + 28*x^6 - 8*x^7 + x^8)) + O(x^40))) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 16*a(n-1) - 120*a(n-2) + 560*a(n-3) - 1820*a(n-4) + 4368*a(n-5) - 8008*a(n-6) + 11440*a(n-7) - 12869*a(n-8) + 11440*a(n-9) - 8008*a(n-10) + 4368*a(n-11) - 1820*a(n-12) + 560*a(n-13) - 120*a(n-14) + 16*a(n-15) - a(n-16).
G.f.: x^7 / ((1 - 3*x + x^2)*(1 - x + x^2)*(1 - 4*x + 7*x^2 - 4*x^3 + x^4)*(1 - 8*x + 28*x^2 - 56*x^3 + 71*x^4 - 56*x^5 + 28*x^6 - 8*x^7 + x^8)). - Colin Barker, Aug 16 2017

A290897 p-INVERT of the positive integers, where p(S) = 1 - S - S^3.

Original entry on oeis.org

1, 3, 9, 29, 95, 307, 976, 3073, 9645, 30283, 95207, 299625, 943363, 2970320, 9351621, 29439359, 92671625, 291715157, 918275995, 2890621063, 9099375792, 28643956245, 90168412937, 283841284899, 893503898503, 2812659866565, 8853968158791, 27871395427616
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290897 *)
  • PARI
    Vec((1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)) + O(x^30)) \\ Colin Barker, Aug 16 2017

Formula

a(n) = 7*a(n-1) - 19*a(n-2) + 27*a(n-3) - 19*a(n-4) + 7*a(n-5) - a(n-6).
G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + x^4) / ((1 - 3*x + 4*x^2 - x^3)*(1 - 4*x + 3*x^2 - x^3)). - Colin Barker, Aug 16 2017

A290898 p-INVERT of the positive integers, where p(S) = 1 - S - S^4.

Original entry on oeis.org

1, 3, 8, 22, 65, 203, 647, 2053, 6423, 19811, 60490, 183750, 557551, 1693921, 5157224, 15731043, 48041589, 146785994, 448475954, 1369853581, 4182850121, 12769287055, 38976737437, 118967979141, 363132913719, 1108463577238, 3383732698880, 10329587789993
Offset: 0

Views

Author

Clark Kimberling, Aug 17 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290898 *)
  • PARI
    Vec((1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4) / (1 - 9*x + 34*x^2 - 71*x^3 + 89*x^4 - 71*x^5 + 34*x^6 - 9*x^7 + x^8) + O(x^40)) \\ Colin Barker, Aug 18 2017

Formula

a(n) = 9*a(n-1) - 34*a(n-2) + 71*a(n-3) - 89*a(n-4) + 71*a(n-5) - 34*a(n-6) + 9*a(n-7) - a(n-8).
G.f.: (1 - x + x^2)*(1 - 5*x + 9*x^2 - 5*x^3 + x^4) / (1 - 9*x + 34*x^2 - 71*x^3 + 89*x^4 - 71*x^5 + 34*x^6 - 9*x^7 + x^8). - Colin Barker, Aug 18 2017

A290899 p-INVERT of the positive integers, where p(S) = 1 - S^2 - S^4.

Original entry on oeis.org

0, 1, 4, 12, 36, 110, 332, 983, 2876, 8380, 24428, 71357, 208868, 612178, 1795228, 5264684, 15436060, 45248195, 132616392, 388652536, 1138993032, 3338020181, 9782903524, 28671786116, 84032220964, 246284956558, 721820483900, 2115530739035, 6200240318564
Offset: 0

Views

Author

Clark Kimberling, Aug 17 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^2 - s^4;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290899 *)
  • PARI
    concat(0, Vec(x*(1 - 4*x + 7*x^2 - 4*x^3 + x^4) / (1 - 8*x + 27*x^2 - 52*x^3 + 63*x^4 - 52*x^5 + 27*x^6 - 8*x^7 + x^8) + O(x^40))) \\ Colin Barker, Aug 18 2017

Formula

a(n) = 8*a(n-1) - 27*a(n-2) + 52*a(n-3) - 63*a(n-4) + 52*a(n-5) - 27*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: x*(1 - 4*x + 7*x^2 - 4*x^3 + x^4) / (1 - 8*x + 27*x^2 - 52*x^3 + 63*x^4 - 52*x^5 + 27*x^6 - 8*x^7 + x^8). - Colin Barker, Aug 18 2017
Previous Showing 31-40 of 64 results. Next