a(n) = (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n.
a(n) = U(n-1, 5)-U(n-2, 5) = T(2*n-1, sqrt(3))/sqrt(3) with Chebyshev's U- and T- polynomials and U(-1, x) := 0, U(-2, x) := -1, T(-1, x) := x.
G.f.: (1-9*x)/(1-10*x+x^2).
6*a(n)^2 - 2 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). -
Gregory V. Richardson, Oct 10 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 8) = a(n+1). -
Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 80 + a(n+1)*a(n+2). -
Ralf Stephan, May 29 2004
a(n) = ceiling(((3-sqrt(6))*(5+2*sqrt(6))^n)/6). -
Paul Weisenhorn, May 23 2020
E.g.f.: exp(5*x)*(3*cosh(2*sqrt(6)*x) - sqrt(6)*sinh(2*sqrt(6)*x))/3. -
Stefano Spezia, Oct 25 2023
a(n) = (-1)^n * Dir(n-1, -5), where Dir(n, x) denotes the n-th row polynomial of
A244419.
For arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = -8 with a(n) := (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n as given above (the particular case x = 0 is noted in the Comments section).
a(n+3/4) + a(n+1/4) = sqrt(2/3) * sqrt(1 + sqrt(3)) *
A001079(n).
a(n+3/4) - a(n+1/4) = 4 * sqrt(sqrt(3) - 1) *
A004189(n).
a(n) divides a(3*n-1); a(n) divides a(5*n-2); in general, for k >= 0, a(n) divides a((2*k+1)*n - k).
Sum_{n >= 2} 1/(a(n) - 1/a(n)) = 1/8 (telescoping series: for n >= 2, 1/(a(n) - 1/a(n)) = 1/
A291181(n-2) - 1/
A291181(n-1).)
Product_{n >= 2} ((a(n) + 1)/(a(n) - 1))^(-1)^n = sqrt(3/2) (telescoping product: Product_{n = 2..k} (((a(n) + 1)/(a(n) - 1))^(-1)^n)^2 = 3/2 * (1 - (-1)^(k+1)/(3*
A098308(k))).) (End)
Comments