cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A290890 p-INVERT of the positive integers, where p(S) = 1 - S^2.

Original entry on oeis.org

0, 1, 4, 11, 28, 72, 188, 493, 1292, 3383, 8856, 23184, 60696, 158905, 416020, 1089155, 2851444, 7465176, 19544084, 51167077, 133957148, 350704367, 918155952, 2403763488, 6293134512, 16475640049, 43133785636, 112925716859, 295643364940, 774004377960
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
Note that in A290890, s = (1,2,3,4,...); i.e., A000027(n+1) for n>=0, whereas in A290990, s = (0,1,2,3,4,...); i.e., A000027(n) for n>=0.
Guide to p-INVERT sequences using s = (1,2,3,4,5,...) = A000027:
p(S) t(1,2,3,4,5,...)
1 - S A001906
1 - S^2 A290890; see A113067 for signed version
1 - S^3 A290891
1 - S^4 A290892
1 - S^5 A290893
1 - S^6 A290894
1 - S^7 A290895
1 - S^8 A290896
1 - S - S^2 A289780
1 - S - S^3 A290897
1 - S - S^4 A290898
1 - S^2 - S^4 A290899
1 - S^2 - S^3 A290900
1 - S^3 - S^4 A290901
1 - 2S A052530; (1/2)*A052530 = A001353
1 - 3S A290902; (1/3)*A290902 = A004254
1 - 4S A003319; (1/4)*A003319 = A001109
1 - 5S A290903; (1/5)*A290903 = A004187
1 - 2*S^2 A290904; (1/2)*A290904 = A290905
1 - 3*S^2 A290906; (1/3)*A290906 = A290907
1 - 4*S^2 A290908; (1/4)*A290908 = A099486
1 - 5*S^2 A290909; (1/5)*A290909 = A290910
1 - 6*S^2 A290911; (1/6)*A290911 = A290912
1 - 7*S^2 A290913; (1/7)*A290913 = A290914
1 - 8*S^2 A290915; (1/8)*A290915 = A290916
(1 - S)^2 A290917
(1 - S)^3 A290918
(1 - S)^4 A290919
(1 - S)^5 A290920
(1 - S)^6 A290921
1 - S - 2*S^2 A290922
1 - 2*S - 2*S^2 A290923; (1/2)*A290923 = A290924
1 - 3*S - 2*S^2 A290925
(1 - S^2)^2 A290926
(1 - S^2)^3 A290927
(1 - S^3)^2 A290928
(1 - S)(1 - S^2) A290929
(1 - S^2)(1 - S^4) A290930
1 - 3 S + S^2 A291025
1 - 4 S + S^2 A291026
1 - 5 S + S^2 A291027
1 - 6 S + S^2 A291028
1 - S - S^2 - S^3 A291029
1 - S - S^2 - S^3 - S^4 A201030
1 - 3 S + 2 S^3 A291031
1 - S - S^2 - S^3 + S^4 A291032
1 - 6 S A291033
1 - 7 S A291034
1 - 8 S A291181
1 - 3 S + 2 S^3 A291031
1 - 3 S + 2 S^2 A291182
1 - 4 S + 2 S^3 A291183
1 - 4 S + 3 S^3 A291184

Examples

			(See the examples at A289780.)
		

Crossrefs

Cf. A000027, A113067, A289780, A113067 (signed version of same sequence).

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290890 *)

Formula

G.f.: x/(1 - 4 x + 5 x^2 - 4 x^3 + x^4).
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - a(n-4).

A072256 a(n) = 10*a(n-1) - a(n-2) for n > 1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 9, 89, 881, 8721, 86329, 854569, 8459361, 83739041, 828931049, 8205571449, 81226783441, 804062262961, 7959395846169, 78789896198729, 779939566141121, 7720605765212481, 76426118085983689, 756540575094624409, 7488979632860260401, 74133255753507979601, 733843577902219535609
Offset: 0

Views

Author

Lekraj Beedassy, Jul 08 2002

Keywords

Comments

Any k in the sequence is followed by 5*k + 2*sqrt(2*(3*k^2 - 1)).
Gives solutions for x in 3*x^2 - 2*y^2 = 1. Corresponding y is given by A054320(n-1). [corrected by Jon E. Schoenfield, Jun 08 2018]
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5,6,7,8,9} which do not end in 0. - Tanya Khovanova, Jan 10 2007
For n >= 2, a(n) equals the permanent of the (2n-2) X (2n-2) tridiagonal matrix with sqrt(8)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Except for the first term, positive values of x (or y) satisfying x^2 - 10xy + y^2 + 8 = 0. - Colin Barker, Feb 09 2014
The aerated sequence [b(n)]n>=1 = [1, 0, 9, 0, 89, 0, 881, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -12, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. - Peter Bala, May 12 2025

Crossrefs

Row 10 of array A094954.
First differences of A004189.
Essentially the same as A138288.

Programs

  • GAP
    a:=[1,1];; for n in [3..20] do a[n]:=10*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    [n le 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 10 2014
    
  • Maple
    seq( simplify(ChebyshevU(n,5) -9*ChebyshevU(n-1,5)), n=0..20); # G. C. Greubel, Jan 14 2020
  • Mathematica
    a[n_]:= a[n]= 10a[n-1] -a[n-2]; a[0]=a[1]=1; Table[ a[n], {n, 0, 20}]
    CoefficientList[Series[(1-9x)/(1-10x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2014 *)
    Table[ChebyshevU[n, 5] -9*ChebyshevU[n-1, 5], {n,0,20}] (* G. C. Greubel, Jan 14 2020 *)
    LinearRecurrence[{10,-1},{1,1},20] (* Harvey P. Dale, Jun 17 2022 *)
  • PARI
    a(n)=([0,1; -1,10]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
    
  • PARI
    vector(21, n, polchebyshev(n-1,2,5) -9*polchebyshev(n-2,2,5) ) \\ G. C. Greubel, Jan 14 2020
    

Formula

a(n) = (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n.
a(n) = (2*A031138(n) + 1)/3 = sqrt((2*A054320(n-1)^2 + 1)/3), n >= 1.
a(n) = U(n-1, 5)-U(n-2, 5) = T(2*n-1, sqrt(3))/sqrt(3) with Chebyshev's U- and T- polynomials and U(-1, x) := 0, U(-2, x) := -1, T(-1, x) := x.
G.f.: (1-9*x)/(1-10*x+x^2).
6*a(n)^2 - 2 is a square. Limit_{n->oo} a(n)/a(n-1) = 5 + 2*sqrt(6). - Gregory V. Richardson, Oct 10 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 8) = a(n+1). - Benoit Cloitre, Nov 10 2002
a(n)*a(n+3) = 80 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
a(n) = L(n-1,10), where L is defined as in A108299; see also A054320 for L(n,-10). - Reinhard Zumkeller, Jun 01 2005
a(n) = A138288(n-1) for n > 0. - Reinhard Zumkeller, Mar 12 2008
a(n) = sqrt(A046172(n)). - Paul Weisenhorn, May 15 2009
a(n) = ceiling(((3-sqrt(6))*(5+2*sqrt(6))^n)/6). - Paul Weisenhorn, May 23 2020
E.g.f.: exp(5*x)*(3*cosh(2*sqrt(6)*x) - sqrt(6)*sinh(2*sqrt(6)*x))/3. - Stefano Spezia, Oct 25 2023
From Peter Bala, May 08 2025: (Start)
a(n) = (-1)^n * Dir(n-1, -5), where Dir(n, x) denotes the n-th row polynomial of A244419.
For arbitrary x, a(n+x)^2 - 10*a(n+x)*a(n+x+1) + a(n+x+1)^2 = -8 with a(n) := (3-sqrt(6))/6 * (5+2*sqrt(6))^n + (3+sqrt(6))/6 * (5-2*sqrt(6))^n as given above (the particular case x = 0 is noted in the Comments section).
a(n+1/2) = 1/sqrt(3) * A001079(n).
a(n+3/4) + a(n+1/4) = sqrt(2/3) * sqrt(1 + sqrt(3)) * A001079(n).
a(n+3/4) - a(n+1/4) = 4 * sqrt(sqrt(3) - 1) * A004189(n).
a(n) divides a(3*n-1); a(n) divides a(5*n-2); in general, for k >= 0, a(n) divides a((2*k+1)*n - k).
Sum_{n >= 2} 1/(a(n) - 1/a(n)) = 1/8 (telescoping series: for n >= 2, 1/(a(n) - 1/a(n)) = 1/A291181(n-2) - 1/A291181(n-1).)
Product_{n >= 2} ((a(n) + 1)/(a(n) - 1))^(-1)^n = sqrt(3/2) (telescoping product: Product_{n = 2..k} (((a(n) + 1)/(a(n) - 1))^(-1)^n)^2 = 3/2 * (1 - (-1)^(k+1)/(3*A098308(k))).) (End)

Extensions

Edited by Robert G. Wilson v, Jul 17 2002
Showing 1-2 of 2 results.