A291182
p-INVERT of the positive integers, where p(S) = 1 - 3*S + 2*S^2.
Original entry on oeis.org
3, 13, 52, 203, 781, 2976, 11267, 42469, 159596, 598499, 2241165, 8383872, 31340691, 117100285, 437378260, 1633244795, 6097779229, 22763575008, 84971451155, 317161317781, 1183776154124, 4418211213011, 16489770106653, 61542705525504, 229685859522339
Offset: 0
-
I:=[3,13,52,203]; [n le 4 select I[n] else 7*Self(n-1)-14*Self(n-2)+7*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - 3 s + 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291182 *)
LinearRecurrence[{7, -14, 7, -1}, {3, 13, 52, 203}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
A291183
p-INVERT of the positive integers, where p(S) = 1 - 4*S + 2*S^2.
Original entry on oeis.org
4, 22, 116, 608, 3180, 16618, 86812, 453440, 2368292, 12369174, 64601428, 337397536, 1762142540, 9203221994, 48066074172, 251036784256, 1311100720708, 6847542588950, 35762957380148, 186780746599392, 975507894703660, 5094827328491242, 26608975328086364
Offset: 0
-
I:=[4,22,116,608]; [n le 4 select I[n] else 8*Self(n-1)-16*Self(n-2)+8*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - 4 s + 2 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291183 *)
LinearRecurrence[{8, -16, 8, -1}, {4, 22, 116, 608}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
A291184
p-INVERT of the positive integers, where p(S) = 1 - 4*S + 3*S^2.
Original entry on oeis.org
4, 21, 104, 507, 2452, 11808, 56732, 272229, 1305400, 6257355, 29988140, 143701056, 688563508, 3299237877, 15807943688, 75741312603, 362900797636, 1738768378464, 8330956025036, 39916050834885, 191249400483544, 916331219497131, 4390407398410844
Offset: 0
-
z = 60; s = x/(1 - x)^2; p = 1 - 4 s + 3 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291184 *)
LinearRecurrence[{8,-17,8,-1},{4,21,104,507},30] (* Harvey P. Dale, Feb 24 2018 *)
A291030
p-INVERT of the positive integers, where p(S) = 1 - S - S^2 - S^3 - S^4.
Original entry on oeis.org
1, 4, 15, 56, 208, 767, 2812, 10278, 37530, 137044, 500571, 1828818, 6682264, 24416877, 89218462, 325997507, 1191160160, 4352355633, 15902968338, 58107491971, 212317732888, 775783501558, 2834620130881, 10357363200392, 37844566834330, 138279520124262
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-33,68,-85,68,-33,9,-1).
-
I:=[1,4,15,56,208,767,2812,10278]; [n le 8 select I[n] else 9*Self(n-1)-33*Self(n-2)+68*Self(n-3)-85*Self(n-4)+68*Self(n-5)-33*Self(n-6)+9*Self(n-7)-Self(n-8): n in [1..40]]; // Vincenzo Librandi, Aug 20 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2 - s^3 - s^4;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291030 *)
LinearRecurrence[{9, -33, 68, -85, 68, -33, 9, -1}, {1, 4, 15, 56, 208, 767, 2812, 10278}, 40] (* Vincenzo Librandi, Aug 20 2017 *)
Comments