cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A292419 a(n) = [x^n] Product_{k>=1} (1 + n*x^k) / (1 - n*x^k).

Original entry on oeis.org

1, 2, 12, 96, 872, 9960, 138180, 2298016, 44686224, 995739498, 24993249820, 697309946784, 21396151468536, 715827315312200, 25926440773118340, 1010478298772398080, 42162515927954808352, 1875027040759682964144, 88527520717734462201756, 4422273966757678408594560
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 16 2017

Keywords

Comments

Convolution of A291698 and A124577.

Crossrefs

Programs

  • Mathematica
    nmax = 25; Table[SeriesCoefficient[Product[(1+n*x^k)/(1-n*x^k), {k, 1, n}], {x, 0, n}], {n, 0, nmax}]
  • PARI
    {a(n)= polcoef(prod(k=1, n, ((1+n*x^k)/(1-n*x^k) +x*O(x^n))), n)};
    for(n=0,20, print1(a(n), ", ")) \\ G. C. Greubel, Feb 02 2019

Formula

a(n) ~ 2 * n^n * (1 + 2/n + 4/n^2 + 8/n^3 + 14/n^4 + 24/n^5 + 40/n^6 + 64/n^7 + 100/n^8 + 154/n^9 + 232/n^10), for coefficients see A015128.

A300411 a(0) = a(1) = 1; a(n) = [x^n] Product_{k=1..n-1} 1/(1 - a(k)*x^a(k)).

Original entry on oeis.org

1, 1, 1, 4, 9, 14, 19, 24, 45, 75, 105, 135, 229, 359, 503, 647, 1047, 1591, 2272, 2972, 4696, 6996, 9844, 12894, 20064, 29538, 41204, 54407, 84457, 123723, 171757, 225939, 348643, 508693, 703815, 923529, 1423892, 2076942, 2870977, 3763380, 5778379, 8414332, 11621307
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[Product[1/(1 - a[k] x^a[k]), {k, 1, n - 1}], {x, 0, n}]; a[0] = a[1] = 1; Table[a[n], {n, 0, 42}]

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies A(x) = -x - 2*x^2 + Product_{n>=1} 1/(1 - a(n)*x^a(n)).

A304782 a(n) = [x^n] (1/(1 - x))*Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 2, 5, 19, 49, 126, 469, 1177, 2881, 6481, 23101, 53725, 127153, 274288, 581925, 1860751, 4155649, 9279791, 19409221, 39839239, 77052401, 229393207, 481747949, 1035561408, 2082441025, 4153434376, 7822058869, 14686515649, 39394280689, 79657493191, 163600884901
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Product[(1 + n x^k), {k, 1, n}], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/(1 - x) Exp[Sum[(-1)^(k + 1) n^k x^k/(k (1 - x^k)), {k, 1, n}]], {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/((1 + n) (1 - x)), {x, 0, n}], {n, 0, 30}]

Formula

a(n) = [x^n] (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*n^k*x^k/(k*(1 - x^k))).
a(n) = Sum_{j=0..n} A286957(j,n).
Previous Showing 11-13 of 13 results.