cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A303026 Matula-Goebel numbers of series-reduced anti-binary (no unary or binary branchings) rooted trees.

Original entry on oeis.org

1, 8, 16, 32, 64, 76, 128, 152, 212, 256, 304, 424, 512, 524, 608, 722, 848, 1024, 1048, 1216, 1244, 1444, 1532, 1696, 2014, 2048, 2096, 2432, 2488, 2876, 2888, 3064, 3392, 3524, 4028, 4096, 4192, 4864, 4976, 4978, 5204, 5618, 5752, 5776, 6128, 6476, 6784
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2018

Keywords

Examples

			The sequence of series-reduced anti-binary rooted trees together with their Matula-Goebel numbers begins:
     1: o
     8: (ooo)
    16: (oooo)
    32: (ooooo)
    64: (oooooo)
    76: (oo(ooo))
   128: (ooooooo)
   152: (ooo(ooo))
   212: (oo(oooo))
   256: (oooooooo)
   304: (oooo(ooo))
   424: (ooo(oooo))
   512: (ooooooooo)
   524: (oo(ooooo))
   608: (ooooo(ooo))
   722: (o(ooo)(ooo))
   848: (oooo(oooo))
  1024: (oooooooooo)
  1048: (ooo(ooooo))
  1216: (oooooo(ooo))
  1244: (oo(oooooo))
  1444: (oo(ooo)(ooo))
  1532: (oo(oo(ooo)))
  1696: (ooooo(oooo))
  2014: (o(ooo)(oooo))
  2048: (ooooooooooo)
		

Crossrefs

Programs

  • Mathematica
    azQ[n_]:=Or[n==1,And[PrimeOmega[n]>2,And@@Cases[FactorInteger[n],{p_,_}:>azQ[PrimePi[p]]]]]
    Select[Range[1000],azQ]

A320270 Number of unlabeled balanced semi-binary rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 6, 7, 10, 13, 19, 25, 35, 46, 65, 88, 124, 171, 242, 334, 470, 653, 921, 1287, 1822, 2565, 3640, 5144, 7311, 10360, 14734, 20918, 29781, 42361, 60389, 86069, 122893, 175479, 250922, 358863
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2, and balanced if all leaves are the same distance from the root. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			The a(1) = 1 through a(7) = 6 balanced semi-binary rooted trees:
  o  (o)  (oo)   ((oo))   (((oo)))   ((o)(oo))    ((oo)(oo))
          ((o))  (((o)))  ((o)(o))   ((((oo))))   (((o)(oo)))
                          ((((o))))  (((o)(o)))   (((((oo)))))
                                     (((((o)))))  ((((o)(o))))
                                                  (((o))((o)))
                                                  ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    saur[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[saur/@ptn]],SameQ@@Length/@Position[#,{}]&],{ptn,Select[IntegerPartitions[n-1],Length[#]<=2&]}]];
    Table[Length[saur[n]],{n,20}]

A343663 Number of unlabeled binary rooted semi-identity plane trees with 2*n - 1 nodes.

Original entry on oeis.org

1, 1, 2, 4, 12, 34, 108, 344, 1136, 3796, 12920, 44442, 154596, 542336, 1917648, 6825464, 24439008, 87962312, 318087216, 1155090092, 4210494616, 15400782912, 56508464736, 207935588586, 767162495940, 2837260332472, 10516827106016, 39063666532784, 145378611426512
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Comments

In a semi-identity tree, only the non-leaf branches of any given vertex are required to be distinct. Alternatively, a rooted tree is a semi-identity tree if the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(5) = 12 trees:
  o  (oo)  ((oo)o)  (((oo)o)o)  ((((oo)o)o)o)
           (o(oo))  ((o(oo))o)  (((o(oo))o)o)
                    (o((oo)o))  (((oo)o)(oo))
                    (o(o(oo)))  ((o((oo)o))o)
                                ((o(o(oo)))o)
                                ((o(oo))(oo))
                                ((oo)((oo)o))
                                ((oo)(o(oo)))
                                (o(((oo)o)o))
                                (o((o(oo))o))
                                (o(o((oo)o)))
                                (o(o(o(oo))))
		

Crossrefs

The not necessarily semi-identity version is A000108.
The non-plane version is A063895, ranked by A339193.
The Matula-Goebel numbers in the non-plane case are A339193.
The not-necessarily binary version is A343937.
A000081 counts unlabeled rooted trees with n nodes.
2*A001190 - 1 counts binary trees, ranked by A111299.
A001190 counts semi-binary trees, ranked by A292050.
A004111 counts identity trees, ranked by A276625.
A306200 counts semi-identity trees, ranked by A306202.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Mathematica
    crsiq[n_]:=Join@@Table[Select[Union[Tuples[crsiq/@ptn]],#=={}||#=={{},{}}||Length[#]==2&&(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
    Table[Length[crsiq[n]],{n,1,11,2}]
    (* Second program: *)
    m = 29; p[_] = 1;
    Do[p[x_] = 1 + x + x (p[x]^2 - p[x^2]) + O[x]^m // Normal, {m}];
    CoefficientList[p[x], x] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    seq(n)={my(p=O(1)); for(n=1, n, p=1 + x + x*(p^2-subst(p,x,x^2))); Vec(p)} \\ Andrew Howroyd, May 07 2021

Formula

G.f.: x*A(x) where A(x) satisfies A(x) = 1 + x + x*(A(x)^2 - A(x^2)). - Andrew Howroyd, May 07 2021

Extensions

Terms a(13) and beyond from Andrew Howroyd, May 07 2021

A298205 Matula-Goebel numbers of rooted trees in which all outdegrees are either 0, 1, or 3.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 12, 18, 19, 20, 27, 30, 31, 37, 44, 45, 50, 61, 66, 67, 71, 75, 76, 99, 103, 110, 113, 114, 124, 125, 127, 148, 157, 165, 171, 186, 190, 193, 197, 222, 229, 242, 244, 268, 275, 279, 283, 284, 285, 310, 317, 331, 333, 353, 363, 366, 370, 379
Offset: 1

Views

Author

Gus Wiseman, Jan 14 2018

Keywords

Examples

			Sequence of rooted trees begins:
1  o
2  (o)
3  ((o))
5  (((o)))
8  (ooo)
11 ((((o))))
12 (oo(o))
18 (o(o)(o))
19 ((ooo))
20 (oo((o)))
27 ((o)(o)(o))
30 (o(o)((o)))
31 (((((o)))))
37 ((oo(o)))
44 (oo(((o))))
45 ((o)(o)((o)))
50 (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stQ[n_]:=Or[n===1,With[{m=primeMS[n]},MemberQ[{1,3},Length[m]]&&And@@stQ/@m]];
    Select[Range[10000],stQ]

A317097 Number of rooted trees with n nodes where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 46, 106, 248, 583, 1393, 3343, 8111, 19801, 48719, 120489, 299787, 749258, 1881216, 4741340, 11993672, 30436507, 77471471, 197726053, 505917729, 1297471092, 3334630086, 8587369072, 22155278381, 57259037225, 148222036272, 384272253397
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 9 trees:
  ((((o))))
  (((oo)))
  ((o(o)))
  ((ooo))
  (o((o)))
  (o(oo))
  ((o)(o))
  (oo(o))
  (oooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,IntegerPartitions[n-1]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=1, n-1, v[n+1]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 28 2018

Extensions

Terms a(20) and beyond from Andrew Howroyd, Aug 28 2018

A317098 Number of series-reduced rooted trees with n unlabeled leaves where the number of distinct branches under each node is <= 2.

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 80, 214, 576, 1595, 4448, 12625, 36146, 104662, 305251, 897417, 2654072, 7895394, 23601441, 70871693, 213660535, 646484951, 1962507610, 5975425743, 18243789556, 55841543003, 171320324878, 526738779846, 1622739134873, 5008518981670
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

There can be more than two branches as long as there are not three distinct branches.

Examples

			The a(5) = 12 trees:
  (o(o(o(oo))))
  (o(o(ooo)))
  (o((oo)(oo)))
  (o(oo(oo)))
  (o(oooo))
  ((oo)(o(oo)))
  ((oo)(ooo))
  (oo(o(oo)))
  (oo(ooo))
  (o(oo)(oo))
  (ooo(oo))
  (ooooo)
		

Crossrefs

Programs

  • Mathematica
    semisameQ[u_]:=Length[Union[u]]<=2;
    nms[n_]:=nms[n]=If[n==1,{{1}},Join@@Table[Select[Union[Sort/@Tuples[nms/@ptn]],semisameQ],{ptn,Rest[IntegerPartitions[n]]}]];
    Table[Length[nms[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n]=sum(k=1, n-1, sumdiv(k, d, v[d])*sumdiv(n-k, d, v[d])/2) + sumdiv(n, d, v[n/d]*(1 - (d-1)/2)) ); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

A320271 Number of unlabeled semi-binary rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 17, 26, 46, 72, 124, 196, 329, 525, 871, 1396, 2293, 3689, 6028, 9717, 15817, 25534, 41475, 67009, 108680, 175689, 284698, 460387, 745610, 1205997, 1952478, 3158475, 5112349, 8270824, 13385466, 21656290, 35045445, 56701735, 91753208
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

An unlabeled rooted tree is semi-binary if all out-degrees are <= 2. The number of semi-binary trees with n nodes is equal to the number of binary trees with n+1 leaves; see A001190.

Examples

			The a(1) = 1 through a(7) = 17 semi-binary rooted trees:
  o  (o)  (oo)   ((oo))   (o(oo))    ((o(oo)))    ((oo)(oo))
          ((o))  (o(o))   (((oo)))   (o((oo)))    (o(o(oo)))
                 (((o)))  ((o)(o))   (o(o(o)))    (((o(oo))))
                          ((o(o)))   ((((oo))))   ((o((oo))))
                          (o((o)))   (((o)(o)))   ((o(o(o))))
                          ((((o))))  (((o(o))))   (o(((oo))))
                                     ((o((o))))   (o((o)(o)))
                                     (o(((o))))   (o((o(o))))
                                     (((((o)))))  (o(o((o))))
                                                  (((((oo)))))
                                                  ((((o)(o))))
                                                  ((((o(o)))))
                                                  (((o))((o)))
                                                  (((o((o)))))
                                                  ((o(((o)))))
                                                  (o((((o)))))
                                                  ((((((o))))))
		

Crossrefs

Programs

Formula

a(1) = 1,
a(2) = 1,
a(3) = 2,
a(n even) = a(n-1) + a(n-2),
a(n odd) = a(n-1) + a(n-2) + a((n-1)/2).

A343937 Number of unlabeled semi-identity plane trees with n nodes.

Original entry on oeis.org

1, 1, 2, 5, 13, 38, 117, 375, 1224, 4095, 13925, 48006, 167259, 588189, 2084948, 7442125, 26725125, 96485782, 350002509, 1275061385, 4662936808, 17111964241, 62996437297, 232589316700, 861028450579, 3195272504259, 11884475937910, 44295733523881, 165420418500155
Offset: 1

Views

Author

Gus Wiseman, May 07 2021

Keywords

Comments

In a semi-identity tree, only the non-leaf branches of any given vertex are required to be distinct. Alternatively, a rooted tree is a semi-identity tree iff the non-leaf branches of the root are all distinct and are themselves semi-identity trees.

Examples

			The a(1) = 1 through a(5) = 13 trees are the following. The number of nodes is the number of o's plus the number of brackets (...).
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (o(o))   ((ooo))
                 (((o)))  (o(o)o)
                          (o(oo))
                          (oo(o))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o(o)))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The not necessarily semi-identity version is A000108.
The non-plane binary version is A063895, ranked by A339193.
The non-plane version is A306200, ranked by A306202.
The binary case is A343663.
A000081 counts unlabeled rooted trees with n nodes.
A001190*2 - 1 counts binary trees, ranked by A111299.
A001190 counts semi-binary trees, ranked by A292050.
A004111 counts identity trees, ranked by A276625.
A306201 counts balanced semi-identity trees, ranked by A306203.
A331966 counts lone-child avoiding semi-identity trees, ranked by A331965.

Programs

  • Mathematica
    arsiq[n_]:=Join@@Table[Select[Union[Tuples[arsiq/@ptn]],#=={}||(UnsameQ@@DeleteCases[#,{}])&],{ptn,Join@@Permutations/@IntegerPartitions[n-1]}];
    Table[Length[arsiq[n]],{n,10}]
  • PARI
    F(p)={my(n=serprec(p,x)-1, q=exp(x*y + O(x*x^n))*prod(k=2, n, (1 + y*x^k + O(x*x^n))^polcoef(p,k,x)) ); sum(k=0, n, k!*polcoef(q,k,y))}
    seq(n)={my(p=O(x)); for(n=1, n, p=x*F(p)); Vec(p)} \\ Andrew Howroyd, May 08 2021

Formula

G.f.: A(x) satisfies A(x) = x*Sum_{j>=0} j!*[y^j] exp(x*y - Sum_{k>=1} (-y)^k*(A(x^k) - x^k)/k). - Andrew Howroyd, May 08 2021

Extensions

Terms a(17) and beyond from Andrew Howroyd, May 08 2021
Previous Showing 11-18 of 18 results.